cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004675 Theta series of extremal even unimodular lattice in dimension 72.

Original entry on oeis.org

1, 0, 0, 0, 6218175600, 15281788354560, 9026867482214400, 1989179450818560000, 213006159759990870000, 13144087517631410995200, 525100718690287495741440, 14756609779472604266496000, 310160311536865273422120000
Offset: 0

Views

Author

Keywords

Comments

The construction of such a lattice was announced by G. Nebe, Aug 12 2010. - N. J. A. Sloane, Aug 13 2010

Examples

			Theta series begins 1 + 6218175600*q^8 + 15281788354560*q^10 + 9026867482214400*q^12 + 1989179450818560000*q^14 + 213006159759990870000*q^16 + 13144087517631410995200*q^18 + 525100718690287495741440*q^20 + 14756609779472604266496000*q^22 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 195.

Crossrefs

Cf. A018236.

Programs

  • Maple
    # get th2, th3, th4 = Jacobi theta constants out to degree maxd
    maxd:=2001:
    temp0:=trunc(evalf(sqrt(maxd)))+2: a:=0: for i from -temp0 to temp0 do a:=a+q^( (i+1/2)^2): od: th2:=series(a,q,maxd):
    a:=0: for i from -temp0 to temp0 do a:=a+q^(i^2): od: th3:=series(a,q,maxd):
    th4:=series(subs(q=-q,th3),q,maxd):
    # get Leech etc
    t1:=th2^8+th3^8+th4^8: e8:=series(t1/2,q,maxd):
    t1:=th2^8*th3^8*th4^8: delta24:=series(t1/256,q,maxd):
    leech:=series(e8^3-720*delta24,q,maxd):
    u1:=series(leech^3,q,maxd):
    #u2:=series(leech^2*delta24,q,maxd):
    u3:=series(leech*delta24^2,q,maxd):
    u4:=series(delta24^3,q,maxd):
    u5:=series(u1-589680*u3-78624000*u4,q,maxd);
  • Mathematica
    terms = 13;
    maxd = 2*terms;
    th1 = EllipticTheta[1, 0, q];
    th2 = EllipticTheta[2, 0, q];
    th3 = EllipticTheta[3, 0, q];
    th4 = th3 /. q -> -q;
    t1 = th2^8 + th3^8 + th4^8;
    e8 = Series[t1/2, {q, 0, maxd}];
    t1 = th2^8*th3^8*th4^8;
    delta24 = Series[t1/256, {q, 0, maxd}];
    leech = Series[e8^3 - 720*delta24, {q, 0, maxd}];
    u1 = Series[leech^3, {q, 0, maxd}];
    u3 = Series[leech*delta24^2, {q, 0, maxd}];
    u4 = Series[delta24^3, {q, 0, maxd}];
    u5 = Series[u1 - 589680*u3 - 78624000*u4, {q, 0, maxd}];
    CoefficientList[u5, q^2][[1 ;; terms]](* Jean-François Alcover, Jul 08 2017, adapted from Maple *)