A004742 Numbers whose binary expansion does not contain 101.
0, 1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 15, 16, 17, 18, 19, 24, 25, 28, 30, 31, 32, 33, 34, 35, 36, 38, 39, 48, 49, 50, 51, 56, 57, 60, 62, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 76, 78, 79, 96, 97, 98, 99, 100, 102, 103, 112, 113, 114, 115, 120, 121, 124, 126, 127
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
- Robert Baillie and Thomas Schmelzer, Summing Kempner's Curious (Slowly-Convergent) Series, Mathematica Notebook kempnerSums.nb, Wolfram Library Archive, 2008.
- Index entries for 2-automatic sequences.
Crossrefs
Programs
-
Haskell
a004742 n = a004742_list !! (n-1) a004742_list = filter f [0..] where f x = x < 4 || x `mod` 8 /= 5 && f (x `div` 2) -- Reinhard Zumkeller, Jul 01 2013
-
Mathematica
Select[Range[0, 130], !StringContainsQ[IntegerString[#, 2], "101"] &] (* Amiram Eldar, Feb 13 2022 *)
-
PARI
is(n)=n=binary(n);for(i=3,#n,if(n[i]&&n[i-2]&&!n[i-1],return(0))); 1 \\ Charles R Greathouse IV, Mar 26 2013
-
PARI
is(n)=while(n>4, if(bitand(n,7)==5, return(0)); n>>=1); 1 \\ Charles R Greathouse IV, Feb 11 2017
-
PARI
is(n)=!bitand(bitand(n,n>>2),bitneg(n>>1)) \\ Charles R Greathouse IV, Oct 28 2021
-
PARI
searchLE(S,x)=my(t=setsearch(S,x)); if(t,t,setsearch(S,x,1)-1); \\ finds last element <= x expand(~v, lim)=my(b=exponent(v[#v]+1), B=1<lim, listpop(~v)); list(lim)=lim\=1; if(lim<5, return(if(lim<0,[],[0..lim]))); my(v=List([0..3])); for(b=3,exponent(lim+1), expand(~v, 2^b-1)); expand(~v, lim); Vec(v)
Formula
Sum_{n>=2} 1/a(n) = 6.198475910942069028389983717965787117743378665090593775808705963863146498248... (calculated using Baillie and Schmelzer's kempnerSums.nb, see Links). - Amiram Eldar, Feb 13 2022