A004754 Numbers n whose binary expansion starts 10.
2, 4, 5, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 128, 129, 130, 131
Offset: 1
Examples
10 in binary is 1010, so 10 is in sequence.
Links
- T. D. Noe, Table of n, a(n) for n = 1..1023
- Ralf Stephan, Some divide-and-conquer sequences ...
- Ralf Stephan, Table of generating functions
- Index entries for sequences related to binary expansion of n
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a004754 n = a004754_list !! (n-1) a004754_list = 2 : concat (transpose [zs, map (+ 1) zs]) where zs = map (* 2) a004754_list -- Reinhard Zumkeller, Dec 04 2015
-
Mathematica
w = {1, 0}; Select[Range[2, 131], If[# < 2^(Length@ w - 1), True, Take[IntegerDigits[#, 2], Length@ w] == w] &] (* Michael De Vlieger, Aug 08 2016 *)
-
PARI
a(n)=n+2^floor(log(n)/log(2))
-
PARI
is(n)=n>1 && !binary(n)[2] \\ Charles R Greathouse IV, Sep 23 2012
-
Python
def A004754(n): return n+(1<
Chai Wah Wu, Jul 13 2022
Formula
a(2n) = 2a(n), a(2n+1) = 2a(n) + 1 + [n==0].
a(n) = n + 2^floor(log_2(n)) = n + A053644(n).
a(2^m+k) = 2^(m+1) + k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
Extensions
Edited by Ralf Stephan, Oct 12 2003
Comments