A004761 Numbers n whose binary expansion does not begin with 11.
0, 1, 2, 4, 5, 8, 9, 10, 11, 16, 17, 18, 19, 20, 21, 22, 23, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 128, 129
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Apart from initial terms, same as A004754.
Programs
-
Maple
f:= proc(n) option remember; if n::odd then procname(n-1)+1 else 2*procname(n/2+1) fi end proc: f(1):= 0: f(2):= 1: map(f, [$1..100]); # Robert Israel, Mar 31 2017
-
Mathematica
Select[Range[0, 140], # <= 2 || Take[IntegerDigits[#, 2], 2] != {1, 1} &] (* Michael De Vlieger, Aug 03 2016 *)
-
PARI
is(n)=n^2==n || !binary(n)[2] \\ Charles R Greathouse IV, Mar 07 2013
-
PARI
a(n) = if(n<=2,n-1, n-=2; n + 1<
Kevin Ryde, Apr 14 2021 -
Python
def A004761(n): return m+(1<
Chai Wah Wu, Jul 26 2023 -
R
maxrow <- 8 # by choice b01 <- 1 for(m in 0:maxrow){ b01 <- c(b01,rep(1,2^(m+1))); b01[2^(m+1):(2^(m+1)+2^m-1)] <- 0 } (a <- c(0,1,which(b01 == 0))) # Yosu Yurramendi, Mar 30 2017
Formula
a(1)=0, a(2)=1 and for k>1: a(2*k-1) = a(2*k-2)+1, a(2*k) = 2*a(k+1). - Reinhard Zumkeller, Jan 09 2002, corrected by Robert Israel, Mar 31 2017
For n > 0, a(n) = 1/2 * (4n - 3 - A006257(n-1)). - Ralf Stephan, Sep 16 2003
a(1) = 0, a(2) = 1, a(2^m+k+2) = 2^(m+1)+k, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Jul 30 2016
a(2^m+k) = A004760(2^m+k) - 2^m, m >= 0, 0 <= k < 2^m. - Yosu Yurramendi, Aug 08 2016
G.f. g(x) satisfies g(x) = 2*(1+x)*g(x^2)/x^2 - x^2*(1-x^2-x^3)/(1-x^2). - Robert Israel, Mar 31 2017