cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004774 Numbers n whose binary expansion does not end in 001.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, 23, 24, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39, 40, 42, 43, 44, 45, 46, 47, 48, 50, 51, 52, 53, 54, 55, 56, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68, 69, 70, 71, 72, 74, 75, 76, 77
Offset: 1

Views

Author

Keywords

Comments

Numbers less than 8 or not congruent to 1 (mod 8). - M. F. Hasler, Nov 02 2013

Programs

  • Mathematica
    Join[Range[0, 3], Select[Range[4, 80], Take[IntegerDigits[#, 2], -3] != {0, 0, 1} &]]  (* Harvey P. Dale, Feb 18 2011 *)
    Table[If[n < 9, n - 1, Floor[(8 n - 10)/7]], {n, 69}] (* or *)
    Rest@ CoefficientList[Series[x^2 (1 + x + x^2 + x^3 + x^4 + x^5 + x^6 + x^8)/((1 - x)^2*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)), {x, 0, 69}], x] (* Michael De Vlieger, Aug 10 2016 *)
  • PARI
    a(n)=if(n<9,n-1,(8*n-10)\7) \\ Charles R Greathouse IV, Mar 26 2013
    
  • PARI
    concat(0, Vec(x^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^8)/((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6)) + O(x^100))) \\ Colin Barker, Jul 23 2016

Formula

From Colin Barker, Jul 23 2016: (Start)
a(n) = a(n-1)+a(n-7)-a(n-8) for n>8.
G.f.: x^2*(1+x+x^2+x^3+x^4+x^5+x^6+x^8) / ((1-x)^2*(1+x+x^2+x^3+x^4+x^5+x^6)).
(End)
a(1) = 0, a(2) = 1, a(7*n + k + 2) = 8*n + k + 1, n >= 0, 1 <= k < 8. - Yosu Yurramendi, Aug 09 2016