A004782 Numbers k such that 2*(2k-3)!/(k!*(k-1)!) is an integer.
2, 3, 7, 16, 21, 29, 43, 46, 67, 78, 89, 92, 105, 111, 127, 141, 154, 157, 171, 188, 191, 205, 210, 211, 221, 229, 232, 239, 241, 267, 277, 300, 309, 313, 316, 323, 326, 331, 346, 369, 379, 415, 421, 430, 436, 441, 443, 451, 460, 461, 465, 469, 477
Offset: 1
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
Select[Range[500], IntegerQ[2 (2 # - 3)!/(#! (# - 1)!)] &] (* Arkadiusz Wesolowski, Sep 06 2011 *)
-
PARI
for(n=2, 999, binomial(2*n-2, n-1)%(n^2-n)||print1(n", "))
-
PARI
is_A004782(n)=!binomod(2*n-2, n-1, n^2-n) \\ Using http://home.gwu.edu/~maxal/gpscripts/binomod.gp by M. Alekseyev. - M. F. Hasler, Nov 11 2015
Formula
a(n) = A014847(n) + 1. - Enrique Pérez Herrero, Feb 03 2013
Extensions
Offset corrected and initial term added by Arkadiusz Wesolowski, Sep 06 2011
Comments