A004793 a(1)=1, a(2)=3; a(n) is least k such that no three terms of a(1), a(2), ..., a(n-1), k form an arithmetic progression.
1, 3, 4, 6, 10, 12, 13, 15, 28, 30, 31, 33, 37, 39, 40, 42, 82, 84, 85, 87, 91, 93, 94, 96, 109, 111, 112, 114, 118, 120, 121, 123, 244, 246, 247, 249, 253, 255, 256, 258, 271, 273, 274, 276, 280, 282, 283, 285, 325, 327, 328, 330, 334, 336, 337, 339, 352, 354
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997.
- Eric Weisstein's World of Mathematics, Nonarithmetic Progression Sequence
- Index entries related to non-averaging sequences
Crossrefs
Programs
-
Maple
a:= proc(n) local m, r, b; m, r, b:= n-1, 2-irem(n, 2), 1; while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*3 od; r end: seq(a(n), n=1..100); # Alois P. Heinz, Nov 02 2021
-
Mathematica
Select[Range[1000], MatchQ[IntegerDigits[#-1, 3], {(0|1)..., 0|2}]&] (* Jean-François Alcover, Jan 13 2019, after Tanya Khovanova in A186776 *)
-
PARI
v[1]=1; v[2]=3; for(n=3,1000,f=2; m=v[n-1]+1; while(1, forstep(k=n-1,1,-1,if(v[k]<(m+1)/2,f=1; break); for(l=1,k-1,if(m-v[k]==v[k]-v[l],f=0; break)); if(f<2,break)); if(!f,m=m+1;f=2); if(f==1,break)); v[n]=m) \\ Ralf Stephan
-
PARI
a(n)=if(n<1,1,if(n%2==0,3*a(n/2)-2-3*((n/2)%2),3*a((n-1)/2)-3*(((n-1)/2)%2))) \\ Ralf Stephan
Formula
a(n) = (3-n)/2 + 2*floor(n/2) + Sum_{k=1..n-1} 3^A007814(k)/2 = A003278(n) + [n is even], proved by Lawrence Sze, following a conjecture by Ralf Stephan.
a(n) = b(n-1), with b(0)=1, b(2n) = 3b(n) - 2 - 3[n odd], b(2n+1) = 3b(n)-3[n odd].
Extensions
Rechecked by David W. Wilson, Jun 04 2002