cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004793 a(1)=1, a(2)=3; a(n) is least k such that no three terms of a(1), a(2), ..., a(n-1), k form an arithmetic progression.

Original entry on oeis.org

1, 3, 4, 6, 10, 12, 13, 15, 28, 30, 31, 33, 37, 39, 40, 42, 82, 84, 85, 87, 91, 93, 94, 96, 109, 111, 112, 114, 118, 120, 121, 123, 244, 246, 247, 249, 253, 255, 256, 258, 271, 273, 274, 276, 280, 282, 283, 285, 325, 327, 328, 330, 334, 336, 337, 339, 352, 354
Offset: 1

Views

Author

Keywords

Crossrefs

Equals A186776(n)+1, A033160(n)-1, A033163(n)-2.
Row 1 of array in A093682.

Programs

  • Maple
    a:= proc(n) local m, r, b; m, r, b:= n-1, 2-irem(n, 2), 1;
          while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*3 od; r
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 02 2021
  • Mathematica
    Select[Range[1000], MatchQ[IntegerDigits[#-1, 3], {(0|1)..., 0|2}]&] (* Jean-François Alcover, Jan 13 2019, after Tanya Khovanova in A186776 *)
  • PARI
    v[1]=1; v[2]=3; for(n=3,1000,f=2; m=v[n-1]+1; while(1, forstep(k=n-1,1,-1,if(v[k]<(m+1)/2,f=1; break); for(l=1,k-1,if(m-v[k]==v[k]-v[l],f=0; break)); if(f<2,break)); if(!f,m=m+1;f=2); if(f==1,break)); v[n]=m) \\ Ralf Stephan
    
  • PARI
    a(n)=if(n<1,1,if(n%2==0,3*a(n/2)-2-3*((n/2)%2),3*a((n-1)/2)-3*(((n-1)/2)%2))) \\ Ralf Stephan

Formula

a(n) = (3-n)/2 + 2*floor(n/2) + Sum_{k=1..n-1} 3^A007814(k)/2 = A003278(n) + [n is even], proved by Lawrence Sze, following a conjecture by Ralf Stephan.
a(n) = b(n-1), with b(0)=1, b(2n) = 3b(n) - 2 - 3[n odd], b(2n+1) = 3b(n)-3[n odd].

Extensions

Rechecked by David W. Wilson, Jun 04 2002