A004823 Numbers that are the sum of 12 positive 11th powers.
12, 2059, 4106, 6153, 8200, 10247, 12294, 14341, 16388, 18435, 20482, 22529, 24576, 177158, 179205, 181252, 183299, 185346, 187393, 189440, 191487, 193534, 195581, 197628, 199675, 354304, 356351, 358398, 360445, 362492, 364539, 366586, 368633, 370680, 372727, 374774
Offset: 1
Examples
From _David A. Corneth_, Aug 04 2020: (Start) 208428902 is in the sequence as 208428902 = 1^11 + 2^11 + 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 5^11 + 5^11 + 5^11 + 5^11. 562491247 is in the sequence as 562491247 = 2^11 + 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 5^11 + 5^11 + 5^11 + 6^11. 620052034 is in the sequence as 620052034 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 5^11 + 5^11 + 5^11 + 5^11 + 5^11 + 6^11. (End)
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000 (first 1000 terms from T. D. Noe)
Programs
-
Mathematica
Select[Union[Total[#^11]&/@Tuples[Range[3],{12}]],#<+400000&] (* Harvey P. Dale, Apr 29 2011 *)
-
PARI
A004823_upto(N, n=12, p=11)=my(P=[x^p|x<-[1..sqrtnint(N-n+1, p)]], S=P); while(n--, S=Set(concat([[x+y|y<-S,x+y<=N]|x<-P])));S \\ M. F. Hasler, Jul 03 2025