cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A004823 Numbers that are the sum of 12 positive 11th powers.

Original entry on oeis.org

12, 2059, 4106, 6153, 8200, 10247, 12294, 14341, 16388, 18435, 20482, 22529, 24576, 177158, 179205, 181252, 183299, 185346, 187393, 189440, 191487, 193534, 195581, 197628, 199675, 354304, 356351, 358398, 360445, 362492, 364539, 366586, 368633, 370680, 372727, 374774
Offset: 1

Views

Author

Keywords

Examples

			From _David A. Corneth_, Aug 04 2020: (Start)
208428902 is in the sequence as 208428902 = 1^11 + 2^11 + 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 5^11 + 5^11 + 5^11 + 5^11.
562491247 is in the sequence as 562491247 = 2^11 + 2^11 + 2^11 + 2^11 + 2^11 + 3^11 + 4^11 + 5^11 + 5^11 + 5^11 + 5^11 + 6^11.
620052034 is in the sequence as 620052034 = 3^11 + 3^11 + 3^11 + 4^11 + 4^11 + 4^11 + 5^11 + 5^11 + 5^11 + 5^11 + 5^11 + 6^11. (End)
		

Crossrefs

Cf. A008455 (eleventh powers), A003335 - A004812 (same for 3rd - 10th powers).

Programs

  • Mathematica
    Select[Union[Total[#^11]&/@Tuples[Range[3],{12}]],#<+400000&]  (* Harvey P. Dale, Apr 29 2011 *)
  • PARI
    A004823_upto(N, n=12, p=11)=my(P=[x^p|x<-[1..sqrtnint(N-n+1, p)]], S=P); while(n--, S=Set(concat([[x+y|y<-S,x+y<=N]|x<-P])));S \\ M. F. Hasler, Jul 03 2025