A004831 Numbers that are the sum of at most 2 nonzero 4th powers.
0, 1, 2, 16, 17, 32, 81, 82, 97, 162, 256, 257, 272, 337, 512, 625, 626, 641, 706, 881, 1250, 1296, 1297, 1312, 1377, 1552, 1921, 2401, 2402, 2417, 2482, 2592, 2657, 3026, 3697, 4096, 4097, 4112, 4177, 4352, 4721, 4802, 5392, 6497, 6561, 6562, 6577, 6642
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..1000
Programs
-
Haskell
a004831 n = a004831_list !! (n-1) a004831_list = [x ^ 4 + y ^ 4 | x <- [0..], y <- [0..x]] -- Reinhard Zumkeller, Jul 15 2013
-
Mathematica
Reap[For[n = 0, n < 10000, n++, If[MatchQ[ PowersRepresentations[n, 2, 4], {{, },_}], Print[n]; Sow[n]]]][[2, 1]] (* Jean-François Alcover, Oct 30 2017 *)
-
PARI
is(n)=#thue(thueinit(z^4+1),n) \\ Ralf Stephan, Oct 18 2013
-
PARI
list(lim)=my(v=List(),t); for(m=0,sqrtnint(lim\=1,4), for(n=0, min(sqrtnint(lim-m^4,4),m), listput(v,n^4+m^4))); Set(v) \\ Charles R Greathouse IV, Sep 28 2015
Formula
Call f(x) the number of terms if this sequence up to x. Then x^(7/16) << f(x) << x^(1/2); in other words, n^2 << a(n) << n^(16/7). The upper bound becomes O(n^2) if A230562 is finite. - Charles R Greathouse IV, Jul 12 2024
Comments