A004842 Numbers that are the sum of at most 2 positive 5th powers.
0, 1, 2, 32, 33, 64, 243, 244, 275, 486, 1024, 1025, 1056, 1267, 2048, 3125, 3126, 3157, 3368, 4149, 6250, 7776, 7777, 7808, 8019, 8800, 10901, 15552, 16807, 16808, 16839, 17050, 17831, 19932, 24583, 32768, 32769, 32800, 33011, 33614, 33792, 35893, 40544
Offset: 1
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 1..10000 (first 159 terms from Vincenzo Librandi)
Crossrefs
Cf. A004845.
Programs
-
Mathematica
Select[Table[n, {n, 0, 50000}], Length[PowersRepresentations[#, 2, 5]] > 0 &] (* Vladimir Joseph Stephan Orlovsky, Jul 19 2011 *)
-
PARI
T=thueinit('z^5+1);is(n)=n==0 || #select(v->min(v[1],v[2])>=0, thue(T, n))>0 \\ Charles R Greathouse IV, Nov 30 2014
-
PARI
is(n)=for(m=sqrtnint(n\2,5), sqrtnint(n,5), if(ispower(n-m^5,5), return(1))); 0 \\ Charles R Greathouse IV, Nov 30 2014
-
PARI
list(lim)=my(v=List(),n5); for(n=0,sqrtnint(lim\=1,5), n5=n^5; for(m=0, min(sqrtnint(lim-n5,5),n), listput(v, n5+m^5))); Set(v) \\ Charles R Greathouse IV, Nov 30 2014
Formula
a(n) << n^(5/2). - Charles R Greathouse IV, Nov 30 2014