A005197 a(n) = Sum_t t*F(n,t), where F(n,t) (see A033185) is the number of rooted forests with n (unlabeled) nodes and exactly t rooted trees.
1, 3, 7, 17, 39, 96, 232, 583, 1474, 3797, 9864, 25947, 68738, 183612, 493471, 1334143, 3624800, 9893860, 27113492, 74577187, 205806860, 569678759, 1581243203, 4400193551, 12273287277, 34307646762, 96093291818, 269654004899, 758014312091, 2134300171031
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..600
- E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
Programs
-
Maple
with(numtheory): t:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*t(d), d=divisors(j))*t(n-j), j=1..n-1))/(n-1)) end: b:= proc(n, i, p) option remember; `if`(p>n, 0, `if`(n=0, 1, `if`(min(i, p)<1, 0, add(b(n-i*j, i-1, p-j) * binomial(t(i)+j-1, j), j=0..min(n/i, p))))) end: a:= a-> add(k*b(n, n, k), k=1..n): seq(a(n), n=1..40); # Alois P. Heinz, Aug 20 2012
-
Mathematica
t[1] = 1; t[n_] := t[n] = Module[{d, j}, Sum[Sum[d*t[d], {d, Divisors[j]}]*t[n-j], {j, 1, n-1}]/(n-1)]; b[1, 1, 1] = 1; b[n_, i_, p_] := b[n, i, p] = If[p>n, 0, If[n == 0, 1, If[Min[i, p]<1, 0, Sum[b[n-i*j, i-1, p-j]*Binomial[t[i]+j-1, j], {j, 0, Min[n/i, p]}]]]]; a[n_] := Sum[k*b[n, n, k], {k, 1, n}]; Table[a[n] // FullSimplify, {n, 1, 30}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
Formula
To get a(n), take row n of the triangle in A033185, multiply successive terms by 1, 2, 3, ... and sum. E.g. a(4) = 1*4+2*3+3*1+4*1 = 17.
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.955765285..., c = 2.85007275... . - Vaclav Kotesovec, Sep 10 2014
Extensions
More terms from Alois P. Heinz, Aug 20 2012