A005198 a(n) is the number of forests with n (unlabeled) nodes in which each component tree is planted, that is, is a rooted tree in which the root has degree 1.
0, 1, 1, 3, 5, 13, 27, 68, 160, 404, 1010, 2604, 6726, 17661, 46628, 124287, 333162, 898921, 2437254, 6640537, 18166568, 49890419, 137478389, 380031868, 1053517588, 2928246650, 8158727139, 22782938271, 63752461474, 178740014515, 502026565792, 1412409894224
Offset: 1
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..2136 (first 118 terms from Washington Bomfim)
- E. M. Palmer and A. J. Schwenk, On the number of trees in a random forest, J. Combin. Theory, B 27 (1979), 109-121.
Crossrefs
Cf. A000081.
Programs
-
Maple
g:= proc(n) option remember; `if`(n<=1, n, (add(add(d*g(d), d=numtheory[divisors](j))*g(n-j), j=1..n-1))/(n-1)) end: b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<2, 0, add( binomial(g(i-1)+j-1, j)*b(n-i*j, i-1), j=0..n/i))) end: a:= n-> b(n$2): seq(a(n), n=1..40); # Alois P. Heinz, Jul 07 2020
-
Mathematica
g[n_] := g[n] = If[n <= 1, n, Sum[Sum[d g[d], {d, Divisors[j]}] g[n - j], {j, 1, n - 1}]/(n - 1)]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 2, 0, Sum[Binomial[g[i - 1] + j - 1, j] b[n - i j, i - 1], {j, 0, n/i}]]]; a[n_] := b[n, n]; Array[a, 40] (* Jean-François Alcover, Nov 08 2020, after Alois P. Heinz *)
-
PARI
g(m) = {my(f); if(m==0, return(1)); f = vector(m+1); f[1]=1; for(j=1, m, f[j+1]=1/j * sum(k=1, j, sumdiv(k,d, d * f[d]) * f[j-k+1])); f[m+1] }; global(max_n = 130); A000081 = vector(max_n, n, g(n-1)); seq(n)={my(s=0, D, c, P_1); if(n==1,return(0)); forpart(P_1 = n, D = Set(P_1); c = vector(#D); for(k=1, #D, c[k] = #select(x->x == D[k], Vec(P_1))); s += prod(k=1, #D, binomial( A000081[D[k]-1] + c[k] - 1, c[k]) ),[2,n],[1,n]); s}; \\ Washington Bomfim, Jul 05 2020
Formula
a(1) = 0, if n >= 2 a(n) = Sum_{P_1(n)}( Product_{k=2..n} binomial(A000081(k-1) + c_k - 1, c_k) ), where P_1(n) are the partitions of n without parts equal to 1: 2*c_2 + ... + n*c_n = n; c_2, ..., c_n >= 0. - Washington Bomfim, Jul 05 2020
Extensions
Definition clarified and more terms added from Palmer-Schwenk by N. J. A. Sloane, May 29 2012