cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005200 Total number of fixed points in rooted trees with n nodes.

Original entry on oeis.org

1, 2, 4, 11, 28, 78, 213, 598, 1670, 4723, 13356, 37986, 108193, 309169, 884923, 2538369, 7292170, 20982220, 60451567, 174385063, 503600439, 1455827279, 4212464112, 12199373350, 35357580112, 102552754000, 297651592188, 864460682777, 2512115979800, 7304240074858
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    # First construct T(x), the g.f. for A000081. Then we form A005200 = s and its g.f. A as follows:
    s := [ 1,2 ]; A := series(add(s[ i ]*x^i,i=1..2),x,3); G := series(subs(x=x^2,A),x,3);
    for n from 3 to 30 do t1 := coeff(T,x,n)+add( coeff(T,x,i)*s[ n-i ],i=1..n-1)-add(coeff(T,x,i)*coeff(G,x,n-i),i=1..n-1); s := [ op(s),t1 ]; A := series(A+t1*x^n,x,n+1); G := series(subs(x=x^2,A),x,n+1); od: s; A;
    # second Maple program:
    with(numtheory): b:= proc(n) option remember; local d, j; if n<1 then 0 elif n=1 then 1 else add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1)/ (n-1) fi end: a:= proc(n) option remember; b(n) +add((b(n-i) -b(n-2*i)) *a(i), i=0..n-1) end: seq(a(n), n=1..100); # Alois P. Heinz, Sep 16 2008
  • Mathematica
    terms = 30; (* T = g.f. of A000081 *)
    T[x_] = 0; Do[T[x_] = x*Exp[Sum[ T[x^k]/k, {k, 1, terms}]] + O[x]^(terms+1) // Normal, terms+1];
    A[] = 0; Do[A[x] = T[x]*(1 + A[x] - A[x^2]) + O[x]^(terms+1) // Normal,
    terms+1];
    Drop[CoefficientList[A[x], x] , 1] (* Jean-François Alcover, Sep 30 2011, updated Jan 11 2018 *)
    b[n_] := b[n] = Module[{d, j}, If[n<1, 0, If[n == 1, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*b[n-j], {j, 1, n-1}]/(n-1)]]]; a[n_] := a[n] = b[n] + Sum[ (b[n-i] - b[n-2*i])*a[i], {i, 0, n-1}]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Nov 11 2015, after Alois P. Heinz *)

Formula

G.f. satisfies A(x)=T(x)[ 1+A(x)-A(x^2) ], where T(x)=x+x^2+2*x^3+... is g.f. for A000081.