A005213 Number of symmetric, reduced unit interval schemes with n+1 intervals (n>=1).
1, 0, 1, 1, 3, 2, 7, 6, 19, 16, 51, 45, 141, 126, 393, 357, 1107, 1016, 3139, 2907, 8953, 8350, 25653, 24068, 73789, 69576, 212941, 201643, 616227, 585690, 1787607, 1704510, 5196627, 4969152, 15134931, 14508939, 44152809, 42422022, 128996853
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Phil Hanlon, Counting interval graphs, Trans. Amer. Math. Soc. 272 (1982), no. 2, 383-426.
Programs
-
Maple
G:=((1+2*z-z^2)/sqrt(1-2*z^2-3*z^4)-1)/(2*z): Gser:=series(G,z=0,40): 1,seq(coeff(Gser,z^n),n=1..38);
-
Mathematica
CoefficientList[Series[((1 + 2*z - z^2)/Sqrt[1 - 2*z^2 - 3*z^4] - 1)/(2*z), {z, 0, 50}], z] (* G. C. Greubel, Mar 02 2017 *)
-
PARI
x='x +O('x^50); Vec(((1+2*x-x^2)/sqrt(1-2*x^2-3*x^4)-1)/(2*x)) \\ G. C. Greubel, Mar 02 2017
Formula
Extensions
Edited by Emeric Deutsch, Nov 21 2003
Comments