cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005213 Number of symmetric, reduced unit interval schemes with n+1 intervals (n>=1).

Original entry on oeis.org

1, 0, 1, 1, 3, 2, 7, 6, 19, 16, 51, 45, 141, 126, 393, 357, 1107, 1016, 3139, 2907, 8953, 8350, 25653, 24068, 73789, 69576, 212941, 201643, 616227, 585690, 1787607, 1704510, 5196627, 4969152, 15134931, 14508939, 44152809, 42422022, 128996853
Offset: 0

Views

Author

Keywords

Comments

Also, number of symmetric Dyck paths of semilength n with no peaks at odd level. E.g., a(4)=3 because we have UUUUDDDD, UUDDUUDD and UUDUDUDD, where U=(1,1) and D=(1,-1).
Sequence is obtained by alternating A002426 and A005717.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    G:=((1+2*z-z^2)/sqrt(1-2*z^2-3*z^4)-1)/(2*z): Gser:=series(G,z=0,40): 1,seq(coeff(Gser,z^n),n=1..38);
  • Mathematica
    CoefficientList[Series[((1 + 2*z - z^2)/Sqrt[1 - 2*z^2 - 3*z^4] - 1)/(2*z), {z, 0, 50}], z] (* G. C. Greubel, Mar 02 2017 *)
  • PARI
    x='x +O('x^50); Vec(((1+2*x-x^2)/sqrt(1-2*x^2-3*x^4)-1)/(2*x)) \\ G. C. Greubel, Mar 02 2017

Formula

G.f.: ((1+2*z-z^2)/sqrt(1-2*z^2-3*z^4)-1)/(2*z).
a(2*n) = A002426(n), a(2*n+1) = [A002426(n+1) - A002426(n)]/2, (A002426(n) are the central trinomial coefficients).

Extensions

Edited by Emeric Deutsch, Nov 21 2003