cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005222 Number of Dyck paths of knight moves.

Original entry on oeis.org

1, 0, 1, 0, 4, 4, 18, 26, 86, 158, 462, 976, 2665, 6082, 16040, 38338, 99536, 244880, 631923, 1583796, 4081939, 10358670, 26728731, 68425494, 176964795, 455967376, 1182454137, 3061954102, 7962768190, 20702327552, 53983118006, 140817757006
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    A[x_] = (s*(r-1+x-x^3) + x*(1+x)*(3+r*(x-1) + x*(6*x-5)))/(4*x^3) /. s -> Sqrt[2]*Sqrt[1+r-2*x*(2*x+x^3-r)] /. r -> Sqrt[1-4*x*(1-x+x^3)];
    A[x] + O[x]^32 // CoefficientList[#, x]& (* Jean-François Alcover, Mar 26 2017, after Gheorghe Coserea *)

Formula

G.f.: A+z^4A^3/(1-zA)^2, where A=(1+2z+sqrt(1-4z+4z^2-4z^4)-sqrt(2)*sqrt(1-4z^2-2z^4+(2z+1)sqrt(1-4z+4z^2-4z^4)))/[4z^2].
a(n) ~ c * (1+sqrt(3))^n / n^(3/2), where c = sqrt(341*sqrt(3) - 225 + 3*sqrt(46*(197*sqrt(3) - 22))) / (4*sqrt(23*Pi)) = 0.794168381329... - Vaclav Kotesovec, Feb 29 2016
A(x) = x^2*A005220(x)*A005221(x) + x*A005221(x)^2 + A005220(x). - Gheorghe Coserea, Jan 16 2017

Extensions

More terms from Emeric Deutsch, Dec 17 2003