cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005308 Bosonic string states.

Original entry on oeis.org

1, 0, 0, 0, 1, 1, 2, 2, 4, 4, 7, 8, 14, 16, 25, 31, 47, 58, 85, 107, 153, 195, 271, 348, 480, 616, 834, 1077, 1445, 1863, 2478, 3194, 4216, 5431, 7118, 9157, 11942, 15329, 19884, 25485, 32916, 42090, 54147, 69093, 88563, 112769, 144056, 183028, 233112, 295525
Offset: 1

Views

Author

Keywords

Comments

See the reference for precise definition.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    nmax = 50; Rest[CoefficientList[Series[x/(1-x)*Product[1/(1-x^k)^((2*k - 5 + (-1)^k)/4), {k, 1, nmax}], {x, 0, nmax}], x]] (* Vaclav Kotesovec, Aug 10 2016 *)

Formula

G.f.: Product (1 - x^k)^{-c(k)}; c(k) = 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, ....
Euler transform gives sequence with g.f. = x^3/((x+1)*(x-1)^2), Simon Plouffe, Master's Thesis, UQAM 1992.
a(n) ~ 2^(1/4) * exp(1/24 - 25*Pi^4/(3456*Zeta(3)) - 5*Pi^2 * n^(1/3) / (24*Zeta(3)^(1/3)) + 3*Zeta(3)^(1/3) * n^(2/3)/2) / (A^(1/2) * sqrt(3) * Zeta(3)^(23/72) * n^(13/72)), where A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Sep 26 2016