A005309 Fermionic string states.
1, 0, 2, 4, 8, 16, 32, 60, 114, 212, 384, 692, 1232, 2160, 3760, 6480, 11056, 18728, 31474, 52492, 86976, 143176, 234224, 380988, 616288, 991624, 1587600, 2529560, 4011808, 6334656, 9960080, 15596532, 24327122, 37801568, 58525152, 90291232, 138825416
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- T. Curtright, Counting symmetry patterns in the spectra of strings, in H. J. de Vega and N. Sánchez, editors, String Theory, Quantum Cosmology and Quantum Gravity. Integrable and Conformal Invariant Theories. World Scientific, Singapore, 1987, pp. 304-333, eq. (3.39) and Table 3.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Formula
G.f. Product_{k>=1} ((1+x^k)/(1-x^k))^(k-1). - Vaclav Kotesovec, Aug 19 2015
a(n) ~ 2^(7/18) * (7*Zeta(3))^(1/36) * exp(1/12 - Pi^4/(336*Zeta(3)) - Pi^2 * n^(1/3) / (2^(5/3)*(7*Zeta(3))^(1/3)) + 3/2 * (7*Zeta(3)/2)^(1/3) * n^(2/3)) / (A * sqrt(3) * n^(19/36)), where Zeta(3) = A002117 and A = A074962 is the Glaisher-Kinkelin constant. - Vaclav Kotesovec, Aug 19 2015
Comments