cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005315 Closed meandric numbers (or meanders): number of ways a loop can cross a road 2n times.

Original entry on oeis.org

1, 1, 2, 8, 42, 262, 1828, 13820, 110954, 933458, 8152860, 73424650, 678390116, 6405031050, 61606881612, 602188541928, 5969806669034, 59923200729046, 608188709574124, 6234277838531806, 64477712119584604, 672265814872772972, 7060941974458061392
Offset: 0

Views

Author

N. J. A. Sloane, J. A. Reeds (reeds(AT)idaccr.org)

Keywords

Comments

There is a 1-to-1 correspondence between loops crossing a road 2n times and lines crossing a road 2n-1 times.

References

  • S. K. Lando and A. K. Zvonkin, Plane and projective meanders, Séries Formelles et Combinatoire Algébrique. Laboratoire Bordelais de Recherche Informatique, Université Bordeaux I, 1991, pp. 287-303.
  • S. K. Lando and A. K. Zvonkin, Meanders, Selecta Mathematica Sovietica, Vol. 11, Number 2, pp. 117-144, 1992.
  • A. Phillips, Simple Alternating Transit Mazes, preprint. Abridged version appeared as "La topologia dei labirinti," in M. Emmer, editor, L'Occhio di Horus: Itinerari nell'Imaginario Matematico. Istituto della Enciclopedia Italia, Rome, 1989, pp. 57-67.
  • V. R. Pratt, personal communication.
  • J. A. Reeds and L. A. Shepp, An upper bound on the meander constant, preprint, May 25, 1999. [Obtains upper bound of 13.01]
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • For additional references, see A005316.

Crossrefs

These are the odd-numbered terms of A005316. Cf. A077054. For nonisomorphic solutions, see A077460.
A column of triangle A008828.

Programs

Formula

a(n) = A005316(2n-1) for n>0.