cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005352 Base -2 representation of -n reinterpreted as binary.

Original entry on oeis.org

3, 2, 13, 12, 15, 14, 9, 8, 11, 10, 53, 52, 55, 54, 49, 48, 51, 50, 61, 60, 63, 62, 57, 56, 59, 58, 37, 36, 39, 38, 33, 32, 35, 34, 45, 44, 47, 46, 41, 40, 43, 42, 213, 212, 215, 214, 209, 208, 211, 210, 221, 220, 223, 222, 217, 216, 219, 218, 197, 196, 199, 198, 193, 192, 195, 194, 205, 204, 207, 206, 201, 200
Offset: 1

Views

Author

Keywords

Examples

			a(4) = 12 because the negabinary representation of -4 is 1100, and in ordinary binary that is 12.
a(5) = 15 because the negabinary representation of -5 is 1111, and in binary that is 15.
		

References

  • M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 101.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A005351 in natural numbers.
Cf. A212529.

Programs

  • Haskell
    a005352 = a005351 . negate  -- Reinhard Zumkeller, Feb 05 2014
    
  • Mathematica
    (* This function comes from the Weisstein page *)
    Negabinary[n_Integer] := Module[{t = (2/3)(4^Floor[Log[4, Abs[n] + 1] + 2] - 1)}, IntegerDigits[BitXor[n + t, t], 2]];
    Table[FromDigits[Negabinary[n], 2], {n, -1, -50, -1}]
    (* Alonso del Arte, Apr 04 2011 *)
  • PARI
    a(n) = my(t=(32*4^logint(n+1,4)-2)/3); bitxor(t-n, t); \\ Ruud H.G. van Tol, Oct 19 2023
    
  • Python
    def A005352(n):
        return ((b:=(4 << (n.bit_length() | 1)) // 3) - n)^b # Adrienne Leonardo, Feb 03 2025

Formula

a(n) = A005351(-n). - Reinhard Zumkeller, Feb 05 2014