A005352 Base -2 representation of -n reinterpreted as binary.
3, 2, 13, 12, 15, 14, 9, 8, 11, 10, 53, 52, 55, 54, 49, 48, 51, 50, 61, 60, 63, 62, 57, 56, 59, 58, 37, 36, 39, 38, 33, 32, 35, 34, 45, 44, 47, 46, 41, 40, 43, 42, 213, 212, 215, 214, 209, 208, 211, 210, 221, 220, 223, 222, 217, 216, 219, 218, 197, 196, 199, 198, 193, 192, 195, 194, 205, 204, 207, 206, 201, 200
Offset: 1
Examples
a(4) = 12 because the negabinary representation of -4 is 1100, and in ordinary binary that is 12. a(5) = 15 because the negabinary representation of -5 is 1111, and in binary that is 15.
References
- M. Gardner, Knotted Doughnuts and Other Mathematical Entertainments. Freeman, NY, 1986, p. 101.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Joerg Arndt, Table of n, a(n) for n = 1..1000
- Joerg Arndt, Matters Computational (The Fxtbook), p. 58-59.
- Eric Weisstein's World of Mathematics, Negabinary
- A. Wilks, Email, May 22 1991
Programs
-
Haskell
a005352 = a005351 . negate -- Reinhard Zumkeller, Feb 05 2014
-
Mathematica
(* This function comes from the Weisstein page *) Negabinary[n_Integer] := Module[{t = (2/3)(4^Floor[Log[4, Abs[n] + 1] + 2] - 1)}, IntegerDigits[BitXor[n + t, t], 2]]; Table[FromDigits[Negabinary[n], 2], {n, -1, -50, -1}] (* Alonso del Arte, Apr 04 2011 *)
-
PARI
a(n) = my(t=(32*4^logint(n+1,4)-2)/3); bitxor(t-n, t); \\ Ruud H.G. van Tol, Oct 19 2023
-
Python
def A005352(n): return ((b:=(4 << (n.bit_length() | 1)) // 3) - n)^b # Adrienne Leonardo, Feb 03 2025
Formula
a(n) = A005351(-n). - Reinhard Zumkeller, Feb 05 2014