cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005464 Number of simplices in barycentric subdivision of n-simplex.

Original entry on oeis.org

1, 127, 6050, 204630, 5921520, 158838240, 4115105280, 105398092800, 2706620716800, 70309810771200, 1858166876966400, 50148628078348800, 1385482985542656000, 39245951652171264000, 1140942623868343296000, 34060437199245929472000, 1044402668566817624064000, 32895725269182358302720000
Offset: 5

Views

Author

Keywords

References

  • R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
  • R. K. Guy, personal communication.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Magma
    [Factorial(n-5)*StirlingSecond(n+2,n-4): n in [5..35]]; // G. C. Greubel, Nov 22 2022
    
  • Maple
    seq((d+2)!*(63*d^5-945*d^4+5355*d^3-13951*d^2+15806*d-5304)/2903040,d=5..30) ; # R. J. Mathar, Mar 19 2018
  • Mathematica
    Table[(n-5)!*StirlingS2[n+2, n-4], {n,5,35}] (* G. C. Greubel, Nov 22 2022 *)
  • SageMath
    [factorial(n-5)*stirling_number2(n+2,n-4) for n in range(5,36)] # G. C. Greubel, Nov 22 2022

Formula

Essentially Stirling numbers of second kind - see A028246.
a(n) = (n-5)! * Stirling2(n+2, n-4). - G. C. Greubel, Nov 22 2022