A005464 Number of simplices in barycentric subdivision of n-simplex.
1, 127, 6050, 204630, 5921520, 158838240, 4115105280, 105398092800, 2706620716800, 70309810771200, 1858166876966400, 50148628078348800, 1385482985542656000, 39245951652171264000, 1140942623868343296000, 34060437199245929472000, 1044402668566817624064000, 32895725269182358302720000
Offset: 5
References
- R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.
- R. K. Guy, personal communication.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 5..440
- R. Austin, R. K. Guy, and R. Nowakowski, Unpublished notes, 1987
- Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets
- Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
Programs
-
Magma
[Factorial(n-5)*StirlingSecond(n+2,n-4): n in [5..35]]; // G. C. Greubel, Nov 22 2022
-
Maple
seq((d+2)!*(63*d^5-945*d^4+5355*d^3-13951*d^2+15806*d-5304)/2903040,d=5..30) ; # R. J. Mathar, Mar 19 2018
-
Mathematica
Table[(n-5)!*StirlingS2[n+2, n-4], {n,5,35}] (* G. C. Greubel, Nov 22 2022 *)
-
SageMath
[factorial(n-5)*stirling_number2(n+2,n-4) for n in range(5,36)] # G. C. Greubel, Nov 22 2022
Formula
Essentially Stirling numbers of second kind - see A028246.
a(n) = (n-5)! * Stirling2(n+2, n-4). - G. C. Greubel, Nov 22 2022