cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005524 Values k arising from a construction of Hirschfeld of k-arcs on elliptic curves over GF(q), where q = A246655(n) is the n-th prime power > 1.

Original entry on oeis.org

2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 16, 18, 19, 20, 21, 22, 25, 27, 28, 30, 32, 34, 37, 38, 40, 42, 44, 45, 48, 50, 51, 54, 58, 61, 62, 64, 65, 67, 72, 74, 75, 75, 77, 80, 81, 87, 88, 91, 94, 96, 98, 100, 103, 104, 109, 110, 113, 114, 120, 126, 129, 130, 132, 135, 136, 137, 141
Offset: 1

Views

Author

Keywords

Comments

Let E be an elliptic curve over GF(q). A k-arc on E is a set of k points in E(GF(q)) such that no three are collinear (in the projective plane over GF(q)). Hirschfeld showed that if the number #E(GF(q)) of GF(q)-rational points on E is even, then there exists a k-arc on E for k = #E(GF(q))/2. Here, a(n) denotes the largest possible k arising from this construction, hence a(n) = floor(A005523(n)/2). Note that a(n) is not necessarily the maximal k such that there exists a k-arc on an elliptic curve over GF(q); e.g. the elliptic curve y^2 = x^3 + x + 1 over GF(5) contains a 6-arc consisting of the points {(0,1), (3,1), (4,2), (4,3), (0,4), (3,4)}. - Robin Visser, Aug 26 2023

Examples

			For n = 4, the elliptic curve E : y^2 = x^3 + 3*x over GF(5) has 10 rational points.  As this is the maximal number of rational points an elliptic curve over GF(5) can have, this implies a(4) = 10/2 = 5. - _Robin Visser_, Aug 26 2023
		

References

  • J. W. P. Hirschfeld, Linear codes and algebraic curves, pp. 35-53 of F. C. Holroyd and R. J. Wilson, editors, Geometrical Combinatorics. Pitman, Boston, 1984. See M_q(1) on page 51.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000961 (values of q), A005523, A365216.

Programs

  • Sage
    for q in range(1, 1000):
        if Integer(q).is_prime_power():
            p = Integer(q).prime_factors()[0]
            if (floor(2*sqrt(q))%p != 0) or (Integer(q).is_square()) or (q==p):
                print(floor((q + 1 + floor(2*sqrt(q)))/2))
            else:
                print(floor((q + floor(2*sqrt(q)))/2))  # Robin Visser, Aug 26 2023

Formula

a(n) = floor(A005523(n)/2) [Hirschfeld]. - Robin Visser, Aug 26 2023

Extensions

New name and more terms from Robin Visser, Aug 26 2023