cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A003287 Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (0,1,1).

Original entry on oeis.org

1, 4, 22, 140, 970, 7196, 56092, 452064, 3735700, 31484244, 269613896, 2339571468, 20529434520, 181871459580, 1624587752400, 14617165101216
Offset: 1

Views

Author

Keywords

Comments

Cf. A001337.

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A001337(n+1) / 12 for n > 1.
Equals (n+1) * A005398(n+1) / 6 for n > 1.

Programs

Extensions

One more term and title improved by Sean A. Irvine, Feb 15 2016
a(15)-a(16) from Bert Dobbelaere, Jan 14 2019

A003288 Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (0,0,2).

Original entry on oeis.org

4, 24, 152, 1080, 8152, 63976, 518232, 4299728, 36360872, 312284536, 2716694880, 23891215320, 212064567160, 1897551819416
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms and title improved by Sean A. Irvine, Feb 15 2016
a(15) from Bert Dobbelaere, Jan 14 2019

A005543 Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (0,2,2).

Original entry on oeis.org

1, 12, 114, 940, 7568, 61728, 512996, 4334884, 37164700, 322624804, 2830973320, 25074130996, 223900666504, 2013718244072
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms and title improved by Sean A. Irvine, Feb 15 2016
a(15) from Bert Dobbelaere, Jan 14 2019

A005544 Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (1,1,2).

Original entry on oeis.org

2, 18, 136, 1030, 7992, 63796, 522474, 4369840, 37179840, 320861342, 2802304988, 24725041598, 220077128644, 1973963065574
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms and title improved by Sean A. Irvine, Feb 16 2016
a(15) from Bert Dobbelaere, Jan 14 2019

A005545 Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (0,1,3).

Original entry on oeis.org

9, 96, 835, 7020, 58857, 497360, 4251804, 36765592, 321262541, 2833702404, 25204186455, 225846648440
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms and title improved by Sean A. Irvine, Feb 17 2016

A005547 Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (1,2,3).

Original entry on oeis.org

3, 52, 575, 5470, 49303, 436446, 3850752, 34063392, 302790797, 2706629188, 24332099665, 219940720414
Offset: 3

Views

Author

Keywords

Comments

McKenzie's paper incorrectly gives a(11) = 303790797. - Sean A. Irvine, Feb 17 2016

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

a(11) corrected, more terms, and title improved by Sean A. Irvine, Feb 17 2016

A005548 Number of n-step self-avoiding walks on f.c.c. lattice from (0,0,0) to (2,2,2).

Original entry on oeis.org

6, 72, 690, 6192, 53946, 466800, 4053816, 35450940, 312411672, 2773863060, 24802293720, 223203954264, 2020552369164
Offset: 3

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Extensions

More terms and title improved by Sean A. Irvine, Feb 17 2016
a(15) from Bert Dobbelaere, Jan 14 2019
Showing 1-7 of 7 results.