A005595 States of a dynamic storage system.
1, 2, 4, 7, 13, 23, 46, 88, 186, 395, 880, 1989, 4644, 10934, 26210, 63319, 154377, 378443, 933022, 2308956, 5735371, 14286907, 35683814, 89324137, 224057918, 563033978, 1417210456, 3572641303, 9018885121, 22796905055, 57692673962, 146167385344, 370710166434
Offset: 0
Keywords
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..200
- C. G. Bower, Transforms
- M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392.
- M. D. McIlroy, The number of states of a dynamic storage system, Computer J., 25 (No. 3, 1982), 388-392. (Annotated scanned copy)
- Index entries for sequences related to bracelets
Programs
-
PARI
seq(n)={Vec((2 - 2*x + x^3)/((1 - x)*(1 - x - x^2)) + sum(d=1, n, eulerphi(d)/d*log((1-x^d)/(1-3*x^d+x^(2*d)) + O(x*x^n))))/2} \\ Andrew Howroyd, Jun 20 2018
Formula
Also "DIK" (bracelet, indistinct, unlabeled) transform of 2, 1, 1, 1, ...
G.f.: ((2 - 2*x + x^3)/((1 - x)*(1 - x - x^2)) + Sum_{d>0} phi(d)*log((1-x^d)/(1-3*x^d+x^(2*d)))/d)/2. - Andrew Howroyd, Jun 20 2018
Extensions
Sequence extended by Christian G. Bower
Terms a(30) and beyond from Andrew Howroyd, Jun 20 2018