A005635 Number of ways of placing n non-attacking bishops on an n X n board so that every square is attacked (or occupied).
1, 1, 1, 1, 3, 8, 36, 110, 666, 3250, 23436, 125198, 1037520, 7241272, 66360960, 500827928, 5080370400, 45926666984, 508032504000, 4919789029480, 59256857923200, 656763542278304, 8532986822438400, 100525959568386848, 1405335514253932800, 18431883489984091552
Offset: 0
References
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- N. J. A. Sloane, Table of n, a(n) for n = 0..250
- Jean-François Alcover, Mathematica program.
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
Programs
-
Maple
E:=proc(n) local k; if n mod 2 = 0 then k := n/2; if k mod 2 = 0 then RETURN( (k!*(k+2)/2)^2 ); else RETURN( ((k-1)!*(k+1)^2/2)^2 ); fi; else k := (n-1)/2; if k mod 2 = 0 then RETURN( ((k!)^2/12)*(3*k^3+16*k^2+18*k+8) ); else RETURN( ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3) ); fi; fi; end; # Gives A122749 unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085 C:=proc(n) local k; if n mod 2 = 0 then RETURN(0); fi; k:=(n-1)/2; if k mod 2 = 0 then RETURN( k*2^(k-1)*((k/2)!)^2 ); else RETURN( 2^k*(((k+1)/2)!)^2 ); fi; end; # Gives A122693 Q:=proc(n) local m; if n mod 8 <> 1 then RETURN(0); fi; m:=(n-1)/8; ((2*m)!)^2/(m!)^2; end; # Gives A122747 M:=proc(n) local k; if n mod 2 = 0 then k:=n/2; if k mod 2 = 0 then RETURN( k!*(k+2)/2 ); else RETURN( (k-1)!*(k+1)^2/2 ); fi; else k:=(n-1)/2; RETURN(D(k)*D(k+1)); fi; end; # Gives A122748 a:=n-> if n <= 1 then RETURN(1) else E(n)/8 + C(n)/8 + Q(n)/4 + M(n)/4; fi; # Gives A005635 # The following additional Maple programs produce A123071, A005631, A123072, A005633, A005632, A005634 S:=proc(n) local k; if n mod 2 = 0 then RETURN(0) else k:=(n-1)/2; RETURN(B(k)*B(k+1)); fi; end; # Gives A123071 psi:=n->S(n)/2; # Gives A005631 zeta:=n->Q(n)/2; # Gives A123072 mu:=n->(M(n)-S(n))/2; # Gives A005633 chi:=n->(C(n)-S(n)-Q(n))/4; # Gives A005632 eps:=n->E(n)/8-C(n)/8+S(n)/4-M(n)/4; # Gives A005634
Extensions
Entry revised by N. J. A. Sloane, Sep 25 2006
Comments