A000903
Number of inequivalent ways of placing n nonattacking rooks on n X n board up to rotations and reflections of the board.
Original entry on oeis.org
1, 1, 2, 7, 23, 115, 694, 5282, 46066, 456454, 4999004, 59916028, 778525516, 10897964660, 163461964024, 2615361578344, 44460982752488, 800296985768776, 15205638776753680, 304112757426239984, 6386367801916347184
Offset: 1
For n=4 the 7 solutions may be taken to be 1234,1243,1324,1423,1432,2143,2413.
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
- R. C. Read, personal communication.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algeb. Combin., 15 (2002), 271-290.
- N. J. A. Sloane, Table of n, a(n) for n = 1..100
- P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
- L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181. [Annotated scan of pages 180 and 181 only]
- E. Lucas, Théorie des Nombres, Gauthier-Villars, Paris, 1891, Vol. 1, p. 222.
- E. Lucas, Théorie des nombres (annotated scans of a few selected pages)
- R. C. Read, Letter to N. J. A. Sloane, Oct. 29, 1976
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
- Zvezdelina Stankova-Frenkel and Julian West, A new class of Wilf-equivalent permutations, arXiv:math/0103152 [math.CO], 2001. See Fig. 9.
- Eric Weisstein's World of Mathematics, Rook Number.
- Eric Weisstein's World of Mathematics, Rooks Problem.
-
Maple programs for A000142, A037223, A122670, A001813, A000085, A000898, A000407, A000902, A000900, A000901, A000899, A000903
P:=n->n!; # Gives A000142
G:=proc(n) local k; k:=floor(n/2); k!*2^k; end; # Gives A037223, A000165
R:=proc(n) local m; if n mod 4 = 2 or n mod 4 = 3 then RETURN(0); fi; m:=floor(n/4); (2*m)!/m!; end; # Gives A122670, A001813
unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085
B:=proc(n) option remember; if n <= 1 then RETURN(1); fi; if n mod 2 = 1 then RETURN(B(n-1)); fi; 2*B(n-2) + (n-2)*B(n-4); end; # Gives A000898 (doubled up)
rho:=n->R(n)/2; # Gives A000407, aerated
beta:=n->B(n)/2; # Gives A000902, doubled up
delta:=n->(D(n)-B(n))/2; # Gives A000900
unprotect(gamma); gamma:=n-> if n <= 1 then RETURN(0) else (G(n)-B(n)-R(n))/4; fi; # Gives A000901, doubled up
alpha:=n->P(n)/8-G(n)/8+B(n)/4-D(n)/4; # Gives A000899
unprotect(sigma); sigma:=n-> if n <= 1 then RETURN(1); else P(n)/8+G(n)/8+R(n)/4+D(n)/4; fi; #Gives A000903
-
c[n_] := Floor[n/2]! 2^Floor[n/2];
r[n_] := If[Mod[n, 4] > 1, 0, m = Floor[n/4]; If[m == 0, 1, (2 m)!/m!]];
d[0] = d[1] = 1; d[n_] := d[n] = (n - 1)d[n - 2] + d[n - 1];
a[1] = 1; a[n_] := (n! + c[n] + 2 r[n] + 2 d[n])/8;
Array[a, 21] (* Jean-François Alcover, Apr 06 2011, after Matthias Engelhardt, further improved by Robert G. Wilson v *)
A122749
Number of arrangements of n non-attacking bishops on an n X n board such that every square of the board is controlled by at least one bishop.
Original entry on oeis.org
4, 2, 16, 44, 256, 768, 5184, 25344, 186624, 996480, 8294400, 57888000, 530841600, 4006195200, 40642560000, 367408742400, 4064256000000, 39358255104000, 474054819840000, 5254107586560000, 68263894056960000, 804207665479680000, 11242684107325440000
Offset: 2
-
E:=proc(n) local k; if n mod 2 = 0 then k := n/2; if k mod 2 = 0 then RETURN( (k!*(k+2)/2)^2 ); else RETURN( ((k-1)!*(k+1)^2/2)^2 ); fi; else k := (n-1)/2; if k mod 2 = 0 then RETURN( ((k!)^2/12)*(3*k^3+16*k^2+18*k+8) ); else RETURN( ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3) ); fi; fi; end;
-
Table[If[n==1,1,1/768*(2*(3*n^3+23*n^2+17*n+21)*(((n-1)/2)!)^2*(1-(-1)^n+2*Sin[(Pi*n)/2])-2*(3*n^3+17*n^2-47*n+3)*((n-3)/2)!*((n+1)/2)!*((-1)^n+2*Sin[(Pi*n)/2]-1)+3*(n+2)^4*((n/2-1)!)^2*((-1)^n-2*Cos[(Pi*n)/2]+1)+12*(n+4)^2*((n/2)!)^2*((-1)^n+2*Cos[(Pi*n)/2]+1))],{n,2,25}] (* Vaclav Kotesovec, Apr 26 2012 *)
a[n_] := Module[{k}, If[Mod[n, 2]==0, k = n/2; If[Mod[k, 2]==0, (k!*(k+2) /2)^2, ((k-1)!*(k+1)^2/2)^2], k = (n-1)/2; If[Mod[k, 2]==0, ((k!)^2/12)* (3*k^3+16*k^2+18*k+8), ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3)]]];
Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Jul 23 2022, after Maple code *)
A182333
Number of arrangements of n bishops such that every square of the board is controlled by at least one bishop.
Original entry on oeis.org
1, 4, 6, 25, 104, 484, 2136, 11664, 71136, 451584, 3006720, 21902400, 176774400, 1456185600, 12758860800, 117456998400, 1181072793600, 12023694950400, 130072449024000, 1451792885760000, 17487355576320000, 212389727477760000, 2729844680048640000
Offset: 1
- A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, vol.1, 1987, p.11 and p.83-88.
-
Table[If[n==1,1,((2*Floor[n/4])!)^2/128*(n^5+3*n^4+n^3+35*n^2+38*n+2-(n^5-n^4-7*n^3-n^2-10*n-30)*(-1)^n-4*(n^3+2*n^2+n-4)*n*Cos[Pi*n/2]-2*(n^5+n^4-11*n^3-7*n^2-2*n+2)*Sin[Pi*n/2])],{n,1,25}]
-
a(n)={if(n==1, 1, (n\4*2)!^2*if(n%4<2, if(n%2==0, (n+1)^2, (n^3 + 3*n^2 + 2*n - 2)/2), if(n%2==0, (n^2+n+2)^2/4, (n+1)*(n-1)*(n^3 + n^2 - 6*n + 6)/8))/4)} \\ Andrew Howroyd, Sep 09 2019
A123072
Bishops on an 8n+1 X 8n+1 board (see Robinson paper for details).
Original entry on oeis.org
1, 2, 72, 7200, 1411200, 457228800, 221298739200, 149597947699200, 134638152929280000, 155641704786247680000, 224746621711341649920000, 396453040698806670458880000, 838894634118674914690990080000, 2097236585296687286727475200000000, 6115541882725140128097317683200000000
Offset: 0
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence zeta(2k+1).]
-
For Maple program see A005635.
-
Table[(((2 n)!/n!)^2)/2, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)
Table[SeriesCoefficient[Series[1/2 + EllipticK[16 x]/Pi, {x, 0, 20}],n] n! n!, {n, 1, 20}] (* Benedict W. J. Irwin, Jun 05 2016 *)
A123071
Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).
Original entry on oeis.org
1, 2, 4, 12, 36, 120, 400, 1520, 5776, 23712, 97344, 431808, 1915456, 9012608, 42406144, 210988800, 1049760000, 5475340800, 28558296064, 155672726528, 848579961856, 4810614454272, 27271456395264, 160376430784512, 943132599095296, 5735299537018880
Offset: 0
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence S(2k+1) eq(24) p. 210.]
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
-
For Maple program see A005635.
# alternative
# this is A000898, replicated as 1,1,2,2,6,6,20,20,76,76,...
B := proc(n)
if n=0 or n= -2 then
1 ;
elif type (n,'odd') then
procname(n-1) ;
else
2*procname(n-2)+(n-2)*procname(n-4) ;
end if;
end proc:
A123071 := proc(n)
B(n)*B(n+1) ;
end proc:
seq(A123071(n),n=0..20) ; # R. J. Mathar, Apr 02 2017
-
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n-1], True, 2*B[n-2] + (n-2)*B[n-4]];
a[n_] := B[n]*B[n+1];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 23 2022, after R. J. Mathar *)
A005631
Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).
Original entry on oeis.org
1, 2, 6, 18, 60, 200, 760, 2888, 11856, 48672, 215904, 957728, 4506304, 21203072, 105494400, 524880000, 2737670400, 14279148032, 77836363264, 424289980928, 2405307227136, 13635728197632, 80188215392256, 471566299547648, 2867649768509440, 17438513317683200
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence psi(2k+1).]
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
-
For Maple program see A005635.
-
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n - 1], True, 2*B[n - 2] + (n - 2)*B[n - 4]];
a[n_] := B[n + 1]*B[n + 2]/2;
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jul 23 2022, after Maple code for A123071 *)
A005632
Bishops on a 2n+1 X 2n+1 board (see Robinson paper for details).
Original entry on oeis.org
0, 0, 5, 22, 258, 1628, 18052, 145976, 1837272, 18407664, 265312848, 3184567136, 52020223648, 728304073664, 13317701313600, 213083801827200, 4314950946864000, 77669134543011584, 1725980887361498368, 34519618313219995136, 835374767116711506432, 18378244896208168541184
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence mu(2k+1).]
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
-
For Maple program see A005635.
-
c[n_] := Module[{k}, If[Mod[n, 2]==0, Return[0]]; k = (n-1)/2; If[Mod[k, 2] == 0, Return[k*2^(k-1)*((k/2)!)^2], Return[2^k*(((k+1)/2)!)^2]]];
d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n-1], True, 2*B[n-2] + (n - 2)*B[n - 4]];
S[n_] := S[n] = Module[{k}, If[Mod[n, 2]==0, 0, k = (n-1)/2; B[k]*B[k+1]]];
Q[n_] := Module[{m}, If[Mod[n, 8] != 1, Return[0]]; m = (n-1)/8; ((2*m)!)^2 /(m!)^2];
a[n_] := (c[2n+1] - S[2n+1] - Q[2n+1])/4;
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jul 23 2022, after Maple program in A005635 *)
A005633
Bishops on an n X n board (see Robinson paper for details).
Original entry on oeis.org
0, 1, 0, 2, 2, 8, 14, 36, 112, 216, 928, 1440, 8616, 11520, 87864, 100800, 997952, 1008000, 12427904, 10886400, 169435936, 130636800, 2501216992, 1676505600, 39837528576, 23471078400, 679494214656, 348713164800, 12370158205568, 5579410636800, 239109033342848
Offset: 1
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence mu(n).]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
-
For Maple program see A005635.
-
d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
M[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[k!*(k + 2)/2], Return[(k - 1)!*(k + 1)^2/2]], k = (n - 1)/2; Return[d[k]*d[k + 1]]]];
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n - 1], True, 2*B[n - 2] + (n - 2)*B[n - 4]];
S[n_] := S[n] = Module[{k}, If[Mod[n, 2]==0, 0, k = (n-1)/2; B[k]*B[k+1]]];
a[n_] := (M[n] - S[n])/2;
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Jul 23 2022, after Maple program in A005635 *)
A005634
Bishops on an n X n board (see Robinson paper for details).
Original entry on oeis.org
0, 0, 1, 4, 28, 85, 630, 3096, 23220, 123952, 1036080, 7230828, 66349440, 500721252, 5080269600, 45925520096, 508031496000, 4919774752448, 59256847036800, 656763354386032, 8532986691801600, 100525956801641104, 1405335512577427200, 18431883446961030912
Offset: 2
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). [The sequence epsilon(n) page 212.]
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
-
For Maple program see A005635.
-
e[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[(k!*(k + 2)/2)^2], Return[((k - 1)!*(k + 1)^2/2)^2]], k = (n - 1)/2; If[Mod[k, 2] == 0, Return[((k!)^2/12)*(3*k^3 + 16*k^2 + 18*k + 8)], Return[((k - 1)!*(k + 1)!/12)*(3*k^3 + 13*k^2 - k - 3)]]]];
c[n_] := Module[{k}, If[Mod[n, 2]==0, Return[0]]; k = (n-1)/2; If[Mod[k, 2] == 0, Return[k*2^(k-1)*((k/2)!)^2], Return[2^k*(((k+1)/2)!)^2]]];
d[n_] := d[n] = If[n <= 1, 1, d[n - 1] + (n - 1)*d[n - 2]];
B[n_] := B[n] = Which[n == 0 || n == -2, 1, OddQ[n], B[n - 1], True, 2*B[n - 2] + (n - 2)*B[n - 4]];
S[n_] := S[n] = Module[{k}, If[Mod[n, 2]==0, 0, k = (n-1)/2; B[k]*B[k+1]]];
M[n_] := Module[{k}, If[Mod[n, 2] == 0, k = n/2; If[Mod[k, 2] == 0, Return[k!*(k + 2)/2], Return[(k - 1)!*(k + 1)^2/2]], k = (n - 1)/2; Return[d[k]*d[k + 1]]]];
a[n_] := e[n]/8 - c[n]/8 + S[n]/4 - M[n]/4;
Table[a[n], {n, 2, 30}] (* Jean-François Alcover, Jul 23 2022, after Maple program in A005635 *)
Showing 1-9 of 9 results.
Comments