cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A000407 a(n) = (2*n+1)! / n!.

Original entry on oeis.org

1, 6, 60, 840, 15120, 332640, 8648640, 259459200, 8821612800, 335221286400, 14079294028800, 647647525324800, 32382376266240000, 1748648318376960000, 101421602465863680000, 6288139352883548160000, 415017197290314178560000
Offset: 0

Views

Author

Keywords

Comments

The e.g.f. of 1/a(n) = n!/(2*n+1)! is (exp(sqrt(x)) - exp(-sqrt(x)))/(2*sqrt(x)). - Wolfdieter Lang, Jan 09 2012
Product of the larger parts of the partitions of 2n+2 into exactly two parts. - Wesley Ivan Hurt, Jun 15 2013
For n > 0, a(n-1) = (2n-1)!/(n-1)!, the number of ways n people can line up in n labeled queues. The derivation is straightforward. Person 1 has (2n-1) choices - be first in line in one of the queues or get behind one of the other people. Person 2 has (2n-2) choices - choose one of the n queues or get behind one of the remaining n-2 people. Continuing in this fashion, we finally find that person n has to choose one of the n queues. - Dennis P. Walsh, Mar 24 2016
For n > 0, a(n-1) is the number of functions f:[n]->[2n] that are acyclic and injective. Note that f is acyclic if, for all x in [n], x is not a member of the set {f(x),f(f(x)), f(f(f(x))), ...}. - Dennis P. Walsh, Mar 25 2016
a(n) is the number of labeled maximal outerplanar graphs with n-3 vertices. - Allan Bickle, Feb 19 2024

Examples

			G.f. = 1 + 6*x + 60*x^2 + 840*x^3 + 15120*x^4 + 332640*x^5 + 8648640*x^6 + ...
For n=1 the a(1)=6 ways for 2 people to line up in 2 queues are as follows: Q1<P1,P2> Q2<>, Q1<P2,P1> Q2<>, Q1<P1> Q2<P2>, Q1<P2> Q2<P1>, Q1<> Q2<P1,P2>, Q1<> Q2<P2,P1>. - _Dennis P. Walsh_, Mar 24 2016
For the unique maximal outerplanar graph with 4 vertices, there are C(4,2)=6 ways to label the two degree 3 vertices, and the other two labels are forced.  Thus a(1) = 6.
		

References

  • L. W. Beineke and R. E. Pippert, Enumerating labeled k-dimensional trees and ball dissections, pp. 12-26 of Proceedings of Second Chapel Hill Conference on Combinatorial Mathematics and Its Applications, University of North Carolina, Chapel Hill, 1970. Reprinted with a slightly different title in Math. Annalen, 191 (1971), 87-98.
  • L. B. W. Jolley, Summation of Series, Dover, 1961.
  • Loren C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A100622 is the "Number of topologically distinct solutions to the clone ordering problem for n clones" without the restriction that they be in a single contig (see [Newberg] for definition of contig).
Column m=0 of A292219.

Programs

  • Magma
    [Factorial(2*n+1) / Factorial(n): n in [0..20]]; // Vincenzo Librandi, Jun 16 2015
  • Maple
    For Maple program see A000903.
    a := n -> pochhammer(n+1,n+1); (for n>=0) # Peter Luschny, Feb 14 2009
  • Mathematica
    Table[(2n + 1)!/n!, {n, 0, 30}] (* Stefan Steinerberger, Apr 08 2006 *)
    a[ n_] := If[ n < 0, 1/2, 1] Pochhammer[ n + 1, n + 1]; (* Michael Somos, Jan 03 2015 *)
    a[ n_] := Which[ n < -1, -(-1)^n / (4 a[-n - 2]), n == -1, 1/2, True, (2 n + 1)! / n!]; (* Michael Somos, Jan 03 2015 *)
  • Maxima
    A000407(n):=(2*n+1)!/n!$
    makelist(A000407(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    a(n)=(2*n+1)!/n! \\ Charles R Greathouse IV, Jan 12 2012
    
  • PARI
    {a(n) = if( n<-1, -(-1)^n / (4 * a(-n-2)), n==-1, 1/2, (2*n + 1)! / n!)}; /* Michael Somos, Jan 03 2015 */
    

Formula

E.g.f.: (1 - 4*x)^(-3/2). - Michael Somos, Jan 03 2015
E.g.f.: Sum_{k>=0} a(k+2) * x^k / k! = (1 - 2*x - sqrt(1 - 4*x)) / 4.
E.g.f. for a(n-1), n >= 0, with a(-1) := 0 is (-1+1/(1-4*x)^(1/2))/2. 2*a(n) = (4*n+2)(!^4) := Product_{j=0..n} (4*j + 2), (one half of 4-factorial numbers). - Wolfdieter Lang
a(n) = C(n+1)*(n+2)!/2 for all n>=0. - Paul Barry, Feb 16 2005
For n>1, a(n) = (1/2)*A001813(n+1). - Zerinvary Lajos, Jun 06 2007
For asymptotics see the Robinson paper.
Sum_{n >=0} n!/a(n) = 2*Pi/3^(3/2) = 1.2091995761... = A248897 [Jolley eq 261]
G.f.: 1 / (1 - 6*x / (1 - 4*x / (1 - 10*x / (1 - 8*x / (1 - 14*x / ... ))))). - Michael Somos, May 12 2012
G.f.: 1/Q(0), where Q(k) = 1 + 2*(2*k-1)*x - 4*x*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 2*x/(2*x + 1/(2*k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 02 2013
a(n) = -(-1)^n / (4 * a(-2-n)) = a(n-1) * (4*n+2) for all n in Z. - Michael Somos, Jan 03 2015
a(n) = A087299(2*n + 1). - Michael Somos, Jan 03 2015
From Peter Bala, Feb 16 2015: (Start)
Recurrence equation: a(n) = 4*a(n-1) + 4*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence b(n) := a(n)*Sum_{k = 0..n} (-1)^k/(2*k + 1), beginning [1, 4, 52, 608, 12624, ...], satisfies the same second-order recurrence equation. This leads to Brouncker's generalized continued fraction expansion Sum_{k >= 0} (-1)^k/(2*k + 1) = Pi/4 = 1/(1 + 1^2/(2 + 3^2/(2 + 5^2/(2 + ... )))). Note b(n) = 2^n*A024199(n+1).
Recurrence equation: a(n) = (5*n + 2)*a(n-1) - 2*n*(2*n - 1)^2*a(n-2) with a(0) = 1 and a(1) = 6.
The integer sequence c(n) := a(n)*Sum_{k = 0..n} k!^2/(2*k + 1)!, beginning [1, 7, 72, 1014, 18276, ... ], satisfies the same second-order recurrence equation. This leads to the generalized continued fraction expansion Sum_{k >= 0} k!^2/(2*k + 1)! = 2*Pi/sqrt(27) = 2*A073010 = 1/(1 - 1/(7 - 12/(12 - 30/(17 - ... - 2*n*(2*n - 1)/((5*n + 2) - ... ))))). (End)
a(n) = Product_{k=n+1..(2*n+1)} k. - Carlos Eduardo Olivieri, Jun 03 2015
From Ilya Gutkovskiy, Jan 17 2017: (Start)
a(n) ~ 2^(2*n+3/2)*n^(n+1)/exp(n).
Sum_{n>=0} 1/a(n) = exp(1/4)*sqrt(Pi)*erf(1/2) = 1.184593072938653151..., where erf() is the error function. (End)
Sum_{n>=0} (-1)^n/a(n) = exp(-1/4)*sqrt(Pi)*erfi(1/2), where erfi() is the imaginary error function. - Amiram Eldar, Jan 18 2021
It follows from the comments above that we have a(n) = a(n-1)*(4*n+2), with a(1) = 6, a(0) = 1.
a(n) = A081125(2*n+1). - R. J. Mathar, Jun 07 2025

A000898 a(n) = 2*(a(n-1) + (n-1)*a(n-2)) for n >= 2 with a(0) = 1.

Original entry on oeis.org

1, 2, 6, 20, 76, 312, 1384, 6512, 32400, 168992, 921184, 5222208, 30710464, 186753920, 1171979904, 7573069568, 50305536256, 342949298688, 2396286830080, 17138748412928, 125336396368896, 936222729254912, 7136574106003456, 55466948299223040, 439216305474605056, 3540846129311916032
Offset: 0

Views

Author

Keywords

Comments

Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
Also the value of the n-th derivative of exp(x^2) evaluated at 1. - N. Calkin, Apr 22 2010
For n >= 1, a(n) is also the sum of the degrees of the irreducible representations of the group of n X n signed permutation matrices (described in sequence A066051). The similar sum for the "ordinary" symmetric group S_n is in sequence A000085. - Sharon Sela (sharonsela(AT)hotmail.com), Jan 12 2002
It appears that this is also the number of permutations of 1, 2, ..., n+1 such that each term (after the first) is within 2 of some preceding term. Verified for n+1 <= 6. E.g., a(4) = 20 because of the 24 permutations of 1, 2, 3, 4, the only ones not permitted are 1, 4, 2, 3; 1, 4, 3, 2; 4, 1, 2, 3; and 4, 1, 3, 2. - Gerry Myerson, Aug 06 2003
Hankel transform is A108400. - Paul Barry, Feb 11 2008
From Emeric Deutsch, Jun 19 2010: (Start)
Number of symmetric involutions of [2n]. Example: a(2)=6 because we have 1234, 2143, 1324, 3412, 4231, and 4321. See the Egge reference, pp. 419-420.
Number of symmetric involutions of [2n+1]. Example: a(2)=6 because we have 12345, 14325, 21354, 45312, 52341, and 54321. See the Egge reference, pp. 419-420.
(End)
Binomial convolution of sequence A000085: a(n) = Sum_{k=0..n} binomial(n,k)*A000085(k)*A000085(n-k). - Emanuele Munarini, Mar 02 2016
The sequence can be obtained from the infinite product of 2 X 2 matrices [(1,N); (1,1)] by extracting the upper left terms, where N = (1, 3, 5, ...), the odd integers. - Gary W. Adamson, Jul 28 2016
Apparently a(n) is the number of standard domino tableaux of size 2n, where a domino tableau is a generalized Young tableau in which all rows and columns are weakly increasing and all regions are dominos. - Gus Wiseman, Feb 25 2018

Examples

			G.f. = 1 + 2*x + 6*x^2 + 20*x^3 + 76*x^4 + 312*x^5 + 1384*x^6 + 6512*x^7 + ...
The a(3) = 20 domino tableaux:
1 1 2 2 3 3
.
1 2 2 3 3
1
.
1 2 3 3   1 1 3 3   1 1 2 2
1 2       2 2       3 3
.
1 1 3 3   1 1 2 2
2         3
2         3
.
1 2 3   1 2 2   1 1 3
1 2 3   1 3 3   2 2 3
.
1 3 3   1 2 2
1       1
2       3
2       3
.
1 2   1 1   1 1
1 2   2 3   2 2
3 3   2 3   3 3
.
1 3   1 2   1 1
1 3   1 2   2 2
2     3     3
2     3     3
.
1 1
2
2
3
3
.
1
1
2
2
3
3 - _Gus Wiseman_, Feb 25 2018
		

References

  • D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 3, Sect 5.1.4 Exer. 31.
  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a000898 n = a000898_list !! n
    a000898_list = 1 : 2 : (map (* 2) $
       zipWith (+) (tail a000898_list) (zipWith (*) [1..] a000898_list))
    -- Reinhard Zumkeller, Oct 10 2011
    
  • Maple
    # For Maple program see A000903.
    seq(simplify((-I)^n*HermiteH(n, I)), n=0..25); # Peter Luschny, Oct 23 2015
  • Mathematica
    a[n_] := Sum[ 2^k*StirlingS1[n, k]*BellB[k], {k, 0, n}]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 17 2011, after Vladeta Jovovic *)
    RecurrenceTable[{a[0]==1,a[1]==2,a[n]==2(a[n-1]+(n-1)a[n-2])},a,{n,30}] (* Harvey P. Dale, Aug 04 2012 *)
    Table[Abs[HermiteH[n, I]], {n, 0, 20}] (* Vladimir Reshetnikov, Oct 22 2015 *)
    a[ n_] := Sum[ 2^(n - 2 k) n! / (k! (n - 2 k)!), {k, 0, n/2}]; (* Michael Somos, Oct 23 2015 *)
  • Maxima
    makelist((%i)^n*hermite(n,-%i),n,0,12); /* Emanuele Munarini, Mar 02 2016 */
  • PARI
    {a(n) = if( n<0, 0, n! * polcoeff( exp(2*x + x^2 + x * O(x^n)), n))}; /* Michael Somos, Feb 08 2004 */
    
  • PARI
    {a(n) = if( n<2, max(0, n+1), 2*a(n-1) + (2*n - 2) * a(n-2))}; /* Michael Somos, Feb 08 2004 */
    
  • PARI
    my(x='x+O('x^66)); Vec(serlaplace(exp(2*x+x^2))) \\ Joerg Arndt, Oct 04 2013
    
  • PARI
    {a(n) = sum(k=0, n\2, 2^(n - 2*k) * n! / (k! * (n - 2*k)!))}; /* Michael Somos, Oct 23 2015 */
    

Formula

a(n) = Sum_{m=0..n} |A060821(n,m)| = H(n,-i)*i^n, with the Hermite polynomials H(n,x); i.e., these are row sums of the unsigned triangle A060821.
E.g.f.: exp(x*(x + 2)).
a(n) = 2 * A000902(n) for n >= 1.
a(n) = Sum_{k=0..n} binomial(n,2k)*binomial(2k,k)*k!*2^(n-2k). - N. Calkin, Apr 22 2010
Binomial transform of A047974. - Paul Barry, May 09 2003
a(n) = Sum_{k=0..n} Stirling1(n, k)*2^k*Bell(k). - Vladeta Jovovic, Oct 01 2003
From Paul Barry, Aug 29 2005: (Start)
a(n) = Sum_{k=0..floor(n/2)} A001498(n-k, k) * 2^(n-k).
a(n) = Sum_{k=0..n} A001498((n+k)/2, (n-k)/2) * 2^((n+k)/2) * (1+(-1)^(n-k))/2. (End)
For asymptotics, see the Robinson paper. [This is disputed by Yen-chi R. Lin. See below, Sep 30 2013.]
a(n) = Sum_{k=0..floor(n/2)} 2^(n-2*k) * C(n,2*k) * (2*k)!/k!. - Paul Barry, Feb 11 2008
G.f.: 1/(1 - 2*x - 2*x^2/(1 - 2*x - 4*x^2/(1 - 2*x - 6*x^2/(1 - 2*x - 8*x^2/(1 - ... (continued fraction). - Paul Barry, Feb 25 2010
E.g.f.: exp(x^2 + 2*x) = Q(0); Q(k) = 1 + (x^2 + 2*x)/(2*k + 1 - (x^2 + 2*x)*(2*k + 1)/((x^2 + 2*x) + (2*k + 2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 24 2011
G.f.: 1/Q(0), where Q(k) = 1 + 2*x*k - x - x/(1 - 2*x*(k + 1)/Q(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Mar 07 2013
a(n) = (2*n/e)^(n/2) * exp(sqrt(2*n)) / sqrt(2*e) * (1 + sqrt(2/n)/3 + O(n^(-1))). - Yen-chi R. Lin, Sep 30 2013
0 = a(n)*(2*a(n+1) + 2*a(n+2) - a(n+3)) + a(n+1)*(-2*a(n+1) + a(n+2)) for all n >= 0. - Michael Somos, Oct 23 2015
a(n) = Sum_{k=0..floor(n/2)} 2^(n-k)*B(n, k), where B are the Bessel numbers A100861. - Peter Luschny, Jun 04 2021

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Feb 21 2001
Initial condition a(0)=1 added to definition by Jon E. Schoenfield, Oct 01 2013
More terms from Joerg Arndt, Oct 04 2013

A000899 Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).

Original entry on oeis.org

0, 0, 0, 1, 9, 70, 571, 4820, 44676, 450824, 4980274, 59834748, 778230060, 10896609768, 163456629604, 2615335902176, 44460874280032, 800296440705472, 15205636325496568, 304112744618157872, 6386367741011250672
Offset: 1

Views

Author

Keywords

References

  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000900.

Programs

  • Maple
    For Maple program see A000903.
  • Mathematica
    a[n_] := ((n+1)! - (2*Floor[(n+1)/2])!! - 2*Sum[Binomial[n+1, 2*k]*(2*k-1)!!, {k, 0, (n+1)/2}] + 2*Sum[2^k*BellB[k]*StirlingS1[Floor[(n+1)/2], k], {k, 0, Floor[(n+1)/2]}])/8; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 23 2013, from explicit formulas *)

Formula

a(n)=(A000142(n)-2*A000085(n)-A037223(n)+2*A000898(floor(n/2)))/8 (all of which have explicit formulas).
For asymptotics see the Robinson paper.

Extensions

More terms from Vladeta Jovovic, May 09 2000

A037223 Number of solutions to non-attacking rooks problem on n X n board that are invariant under 180-degree rotation.

Original entry on oeis.org

1, 1, 2, 2, 8, 8, 48, 48, 384, 384, 3840, 3840, 46080, 46080, 645120, 645120, 10321920, 10321920, 185794560, 185794560, 3715891200, 3715891200, 81749606400, 81749606400, 1961990553600, 1961990553600, 51011754393600, 51011754393600, 1428329123020800, 1428329123020800
Offset: 0

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

This is just A000165 doubled up. Normally such sequences do not get their own entry in the OEIS. This is an exception. - N. J. A. Sloane, Sep 23 2006
Also the number of permutations of (1,2,3,...,n) for which the reverse of the inverse is the same as the inverse of the reverse. - Ian Duff, Mar 09 2007
Conjecture: a(n) = Product_{1<=i<=n and phi(i)<=floor(i/2)}i. - Enrique Pérez Herrero, May 31 2012. This conjecture is WRONG, counterexample is n=105. [Vaclav Kotesovec, Sep 07 2012]

References

  • E. Lucas, Theorie des nombres, Gauthiers-Villars, Paris, 1891, Vol 1, p. 221.

Crossrefs

Programs

  • Magma
    [Factorial((n div 2) -1)*2^((n div 2)-1): n   in [2..35]]; // Vincenzo Librandi, Nov 17 2018
  • Maple
    For Maple program see A000903.
    # second Maple program:
    a:= n-> (r-> r!*2^r)(iquo(n, 2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Dec 23 2013
  • Mathematica
    f[n_]:=Times@@Select[Range[n],EulerPhi[#]<=Floor[#/2]&]; Table[f[n],{n,1,30}] (* Conjectured: Enrique Pérez Herrero, May 31 2012 *)(* This conjecture and also program is WRONG for n=105, Vaclav Kotesovec, Sep 07 2012 *)
    a[n_] := (2*Floor[n/2])!!; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Dec 23 2013, after N. J. A. Sloane's comment *)

Formula

a(2n) = a(2n+1) = n!*2^n.
E.g.f.: 1 + x + (1 + x + x^2)*exp(x^2/2)*sqrt(Pi/2)*erf(x/sqrt(2)), where erf denotes the error function. - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
For asymptotics see the Robinson paper.
E.g.f.: Q(0) where Q(k)= 1 + x/(2*k + 1 - x*(2*k+1)/(x+1/Q(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 21 2012
E.g.f.: 1/(W(0)-x) where W(k)= x + 1/(1 + x/(2*k + 1 - x*(2*k+1)/W(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 22 2012
a(n) = Product_{i=1..floor(n/2)} 2*i. - Wesley Ivan Hurt, Oct 19 2014
D-finite with recurrence: a(n) +a(n-1) -n*a(n-2) +(-n+2)*a(n-3)=0. - R. J. Mathar, Feb 20 2020

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
Edited by N. J. A. Sloane, Sep 23 2006

A000900 Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).

Original entry on oeis.org

0, 0, 0, 1, 2, 10, 28, 106, 344, 1272, 4592, 17692, 69384, 283560, 1191984, 5171512, 23087168, 105883456, 498572416, 2404766224, 11878871456, 59975885856, 309439708352, 1628919330208, 8746079933568, 47840206525056
Offset: 0

Views

Author

Keywords

References

  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    For Maple program see A000903.
  • Mathematica
    a85[n_] := Sum[ (2k)!/k!/2^k Binomial[n, 2k], {k, 0, n/2}]; a898[n_] := Sum[ 2^k*StirlingS1[n, k]*BellB[k], {k, 0, n}]; a[n_] := (a85[n] - a898[Floor[n/2]])/2; a[1] = 0; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Dec 13 2011, after formula *)

Formula

a(n)=(A000085(n)-A000898(int(n/2)))/2
For asymptotics see the Robinson paper.

Extensions

More terms from Vladeta Jovovic, May 09 2000

A000902 Expansion of e.g.f. (1/2)*(exp(2*x + x^2) + 1).

Original entry on oeis.org

1, 1, 3, 10, 38, 156, 692, 3256, 16200, 84496, 460592, 2611104, 15355232, 93376960, 585989952, 3786534784, 25152768128, 171474649344, 1198143415040, 8569374206464, 62668198184448, 468111364627456, 3568287053001728
Offset: 0

Views

Author

Keywords

Comments

Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).
One more than the number of ordered pairs of minimally intersecting partitions such that p consists of exactly two blocks.
The number of B-orbits in the symmetric space of type DIII, SO_{2n}(C)/GL_n(C) where B is a Borel subgroup of SO_{2n}(C). These are parameterized by "type DIII (n,n)-clans". E.g., for n=2, the a(2)=3 type DIII (2,2)-clans are ++--, --++, and 1212. See [Bingham and Ugurlu] link. - Aram Bingham, Feb 08 2020

References

  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals 1/2 * A000898(n) for n>0.

Programs

  • Haskell
    a000902 n = a000902_list !! n
    a000902_list = 1 : 1 : 3 : map (* 2) (zipWith (+)
       (drop 2 a000902_list) (zipWith (*) [2..] $ tail a000902_list))
    -- Reinhard Zumkeller, Sep 10 2013
    
  • Magma
    a:=[1,3]; [1] cat [n le 2 select a[n] else 2*Self(n-1) + (2*n-2)*Self(n-2):n in [1..22]]; // Marius A. Burtea, Feb 12 2020
  • Maple
    # Comment from the authors: For Maple program see A000903.
    A000902 := n -> `if`(n=0, 1, I^(-n)*orthopoly[H](n, I)/2):
    seq(A000902(n), n=0..22); # Peter Luschny, Nov 29 2017
  • Mathematica
    n = 22; CoefficientList[ Series[(1/2)*(Exp[2*x+x^2] + 1), {x, 0, n}], x] * Table[k!, {k, 0, n}]
    (* Jean-François Alcover, May 18 2011 *)
    With[{nn=30},CoefficientList[Series[(Exp[2x+x^2]+1)/2,{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Jul 27 2025 *)

Formula

a(n) = 2*a(n-1) + (2n-2)*a(n-2) for n >= 3. - N. J. A. Sloane, Sep 23 2006
a(n) = 1 + n!/(2e) * [x^n] Sum[l>=0, 1/l! * {(1+x)^l-1}^2].
For asymptotics see the Robinson paper.
But the asymptotic formula in the Robinson paper is wrong (see A000898, discussion from Oct 01 2013). - Vaclav Kotesovec, Aug 04 2014
a(n) ~ 2^(n/2-3/2) * n^(n/2) * exp(sqrt(2*n)-n/2-1/2). - Vaclav Kotesovec, Aug 04 2014
a(n) = (i/2)^(1 - n)*KummerU((1 - n)/2, 3/2, -1) for n>=1. - Peter Luschny, Nov 29 2017
a(n) = Sum_{r=0..floor(n/2)} 2^(n-2r-1) * {(n!)/(r!(n-2r)!)}. - Aram Bingham, Feb 08 2020

A309260 Number of ways of placing 2n-1 nonattacking rooks on a hexagonal board with edge-length n in Glinski's hexagonal chess, inequivalent up to rotations and reflections of the board.

Original entry on oeis.org

1, 1, 1, 5, 29, 224, 3012, 55200, 1259794, 35488536, 1200819600
Offset: 1

Views

Author

Sangeet Paul, Jul 19 2019

Keywords

Comments

A rook in Glinski's hexagonal chess can move to any cell along the perpendicular bisector of any of the 6 edges of the hexagonal cell it's on (analogous to a rook in orthodox chess which can move to any cell along the perpendicular bisector of any of the 4 edges of the square cell it's on).

Examples

			a(1) = 1
.
  o
.
a(2) = 1
.
   o .
  . . o
   o .
.
a(3) = 1
.
    o . .
   . . o .
  . . . . o
   o . . .
    . o .
.
a(4) = 5
.
     o . . .        o . . .        o . . .        . o . .        . o . .
    . . o . .      . . o . .      . . . o .      o . . . .      . . . . o
   . . . . o .    . . . . . o    . . . . . o    . . . . . o    o . . . . .
  . . . . . . o  . o . . . . .  . . o . . . .  . . . o . . .  . . . o . . .
   o . . . . .    . . . . . o    o . . . . .    . . . . . o    . . . . . o
    . o . . .      . . o . .      . . . . o      o . . . .      o . . . .
     . . o .        o . . .        . o . .        . o . .        . . o .
.
		

Crossrefs

Extensions

a(1)-a(7) confirmed by Vaclav Kotesovec, Aug 16 2019
a(8) from Alain Brobecker, Dec 10 2021
a(8) confirmed by Vaclav Kotesovec, Dec 12 2021
a(9) from Alain Brobecker, Dec 13 2021
a(9) confirmed by Vaclav Kotesovec, Dec 18 2021
a(10)-a(11) from Bert Dobbelaere, Oct 24 2022

A000901 Number of solutions to the rook problem on a 2n X 2n board having a certain symmetry group (see Robinson for details).

Original entry on oeis.org

0, 0, 7, 74, 882, 11144, 159652, 2571960, 46406392, 928734944, 20436096048, 490489794464, 12752891909920, 357081983435904, 10712466529388608, 342798976818878336, 11655165558112403328, 419585962575107694080
Offset: 1

Views

Author

Keywords

References

  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    For Maple program see A000903.

Formula

For asymptotics see the Robinson paper.

Extensions

Corrected and extended by Sean A. Irvine, Aug 23 2011

A122670 If n mod 4 = 2 or n mod 4 = 3 then a(n) = 0 else let m=floor(n/4), then a(n) = (2*m)!/m!.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 0, 12, 12, 0, 0, 120, 120, 0, 0, 1680, 1680, 0, 0, 30240, 30240, 0, 0, 665280, 665280, 0, 0, 17297280, 17297280, 0, 0, 518918400, 518918400, 0, 0, 17643225600, 17643225600, 0, 0, 670442572800, 670442572800, 0, 0, 28158588057600, 28158588057600, 0, 0, 1295295050649600
Offset: 0

Views

Author

N. J. A. Sloane, Sep 23 2006

Keywords

Comments

Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).
A037224 is an essentially identical sequence.

References

  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).

Crossrefs

If the duplicates and zeros are omitted we get A001813.

Programs

  • Maple
    R:=proc(n) local m; if n mod 4 = 2 or n mod 4 = 3 then RETURN(0); fi; m:=floor(n/4); (2*m)!/m!; end;
    For Maple program see A000903.
  • Mathematica
    Table[If[MemberQ[{2,3},Mod[n,4]],0,((2Floor[n/4])!/Floor[n/4]!)],{n,0,50}] (* Harvey P. Dale, Dec 30 2023 *)

Formula

For asymptotics see the Robinson paper.
a(n) = (1/2 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2) * ((n/2 - 3/4 + (-1)^n/4 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2)! / ((n/4 - 3/8 + (-1)^n/8 + (-1)^(n/2 - 1/4 + (-1)^n/4)/4)!)). - Wesley Ivan Hurt, Mar 30 2015

A292080 Number of nonequivalent ways to place n non-attacking rooks on an n X n board with no rook on 2 main diagonals up to rotations and reflections of the board.

Original entry on oeis.org

1, 0, 0, 0, 2, 2, 14, 84, 630, 6096, 55336, 672160, 7409300, 104999520, 1366363752, 22068387264, 331233939624, 6005919062528, 102144359744192, 2054811316442112, 39053339674065360, 863259240785840640, 18132529836143846560, 436899062862222484480
Offset: 0

Views

Author

Andrew Howroyd, Sep 12 2017

Keywords

Comments

For odd n, there are no symmetrical configurations of non-attacking rooks without a rook in the main diagonal, so a(2n+1) = A003471(2n+1) / 8. For even n, configurations with rotational and diagonal symmetry are possible.

Examples

			Case n=4: The 2 nonequivalent solutions are:
   _ x _ _     _ x _ _
   x _ _ _     _ _ _ x
   _ _ _ x     x _ _ _
   _ _ x _     _ _ x _
Case n=5: The 2 nonequivalent solutions are:
   _ x _ _ _   _ x _ _ _
   x _ _ _ _   _ _ _ _ x
   _ _ _ x _   x _ _ _ _
   _ _ _ _ x   _ _ x _ _
   _ _ x _ _   _ _ _ x _
		

Crossrefs

Programs

  • Mathematica
    sf[n_] := n! * SeriesCoefficient[Exp[-x ] / (1 - x), {x, 0, n}];
    F[n_] := (Clear[v]; v[_] = 0; For[m = 4, m <= n, m++, v[m] = (m - 1)*v[m - 1] + 2*If[OddQ[m], (m - 1)*v[m - 2], (m - 2)*If[m == 4, 1, v[m - 4]]]]; v[n]);
    d[n_] := Sum[(-1)^(n-k)*Binomial[n, k]*(2k)!/(2^k*k!), {k, 0, n}];
    R[n_] := If[OddQ[n], 0, (n - 1)!*2/(n/2 - 1)!];
    a[0] = 1; a[n_] := (F[n] + If[OddQ[n], 0, m = n/2; 2^m * sf[m] + 2*R[m] + 2*d[m]])/8;
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Dec 28 2017, after Andrew Howroyd *)
  • PARI
    \\ here sf is A000166, F is A003471, D is A053871, R(n) is A037224(2n).
    sf(n) = {n! * polcoeff( exp(-x + x * O(x^n)) / (1 - x), n)}
    F(n) = {my(v = vector(n)); for(n=4,length(v),v[n]=(n-1)*v[n-1]+2*if(n%2==1,(n-1)*v[n-2],(n-2)*if(n==4,1,v[n-4]))); v[n]}
    D(n) = {sum(k=0, n, (-1)^(n-k) * binomial(n,k) * (2*k)!/(2^k*k!))}
    R(n) = {if(n%2==1, 0, (n-1)!*2/(n/2-1)!)}
    a(n) = {(F(n) + if(n%2==1, 0, my(m=n/2); 2^m * sf(m) + 2*R(m) + 2*D(m)))/8}

Formula

a(2n+1) = A003471(2n+1) / 8, a(2n) = (A003471(2n) + 2^n * A000166(n) + 2*A037224(2*n) + 2*A053871(n)) / 8.
Showing 1-10 of 12 results. Next