cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A000903 Number of inequivalent ways of placing n nonattacking rooks on n X n board up to rotations and reflections of the board.

Original entry on oeis.org

1, 1, 2, 7, 23, 115, 694, 5282, 46066, 456454, 4999004, 59916028, 778525516, 10897964660, 163461964024, 2615361578344, 44460982752488, 800296985768776, 15205638776753680, 304112757426239984, 6386367801916347184
Offset: 1

Views

Author

Keywords

Examples

			For n=4 the 7 solutions may be taken to be 1234,1243,1324,1423,1432,2143,2413.
		

References

  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algeb. Combin., 15 (2002), 271-290.

Crossrefs

Programs

  • Maple
    Maple programs for A000142, A037223, A122670, A001813, A000085, A000898, A000407, A000902, A000900, A000901, A000899, A000903
    P:=n->n!; # Gives A000142
    G:=proc(n) local k; k:=floor(n/2); k!*2^k; end; # Gives A037223, A000165
    R:=proc(n) local m; if n mod 4 = 2 or n mod 4 = 3 then RETURN(0); fi; m:=floor(n/4); (2*m)!/m!; end; # Gives A122670, A001813
    unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085
    B:=proc(n) option remember; if n <= 1 then RETURN(1); fi; if n mod 2 = 1 then RETURN(B(n-1)); fi; 2*B(n-2) + (n-2)*B(n-4); end; # Gives A000898 (doubled up)
    rho:=n->R(n)/2; # Gives A000407, aerated
    beta:=n->B(n)/2; # Gives A000902, doubled up
    delta:=n->(D(n)-B(n))/2; # Gives A000900
    unprotect(gamma); gamma:=n-> if n <= 1 then RETURN(0) else (G(n)-B(n)-R(n))/4; fi; # Gives A000901, doubled up
    alpha:=n->P(n)/8-G(n)/8+B(n)/4-D(n)/4; # Gives A000899
    unprotect(sigma); sigma:=n-> if n <= 1 then RETURN(1); else P(n)/8+G(n)/8+R(n)/4+D(n)/4; fi; #Gives A000903
  • Mathematica
    c[n_] := Floor[n/2]! 2^Floor[n/2];
    r[n_] := If[Mod[n, 4] > 1, 0, m = Floor[n/4]; If[m == 0, 1, (2 m)!/m!]];
    d[0] = d[1] = 1; d[n_] := d[n] = (n - 1)d[n - 2] + d[n - 1];
    a[1] = 1; a[n_] := (n! + c[n] + 2 r[n] + 2 d[n])/8;
    Array[a, 21] (* Jean-François Alcover, Apr 06 2011, after Matthias Engelhardt, further improved by Robert G. Wilson v *)

Formula

If n>1 then a(n) = 1/8 * (F(n) + C(n) + 2 * R(n) + 2 * D(n)), where F(n) = A000142(n) [all solutions, i.e., factorials], C(n) = A037223(n) [central symmetric solutions], R(n) = A037224(n) [rotationally symmetric solutions] and D(n) = A000085(n) [symmetric solutions by reflection at a diagonal]. - Matthias Engelhardt, Apr 05 2000
For asymptotics see the Robinson paper.

Extensions

More terms from David W. Wilson, Jul 13 2003

A122670 If n mod 4 = 2 or n mod 4 = 3 then a(n) = 0 else let m=floor(n/4), then a(n) = (2*m)!/m!.

Original entry on oeis.org

1, 1, 0, 0, 2, 2, 0, 0, 12, 12, 0, 0, 120, 120, 0, 0, 1680, 1680, 0, 0, 30240, 30240, 0, 0, 665280, 665280, 0, 0, 17297280, 17297280, 0, 0, 518918400, 518918400, 0, 0, 17643225600, 17643225600, 0, 0, 670442572800, 670442572800, 0, 0, 28158588057600, 28158588057600, 0, 0, 1295295050649600
Offset: 0

Views

Author

N. J. A. Sloane, Sep 23 2006

Keywords

Comments

Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).
A037224 is an essentially identical sequence.

References

  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).

Crossrefs

If the duplicates and zeros are omitted we get A001813.

Programs

  • Maple
    R:=proc(n) local m; if n mod 4 = 2 or n mod 4 = 3 then RETURN(0); fi; m:=floor(n/4); (2*m)!/m!; end;
    For Maple program see A000903.
  • Mathematica
    Table[If[MemberQ[{2,3},Mod[n,4]],0,((2Floor[n/4])!/Floor[n/4]!)],{n,0,50}] (* Harvey P. Dale, Dec 30 2023 *)

Formula

For asymptotics see the Robinson paper.
a(n) = (1/2 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2) * ((n/2 - 3/4 + (-1)^n/4 + (-1)^(n/2 - 1/4 + (-1)^n/4)/2)! / ((n/4 - 3/8 + (-1)^n/8 + (-1)^(n/2 - 1/4 + (-1)^n/4)/4)!)). - Wesley Ivan Hurt, Mar 30 2015

A263685 Number of inequivalent placements of n nonattacking rooks on n X n board up to rotations of the board.

Original entry on oeis.org

1, 1, 2, 9, 33, 192, 1272, 10182, 90822, 908160, 9980160, 119761980, 1556766780, 21794734080, 326918753280, 5230700053320, 88921859605320, 1600593472880640, 30411275148656640, 608225502973147920, 12772735543856347920, 281000181964839321600, 6463004184741681561600
Offset: 1

Views

Author

Max Alekseyev, Oct 31 2015

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := (r=Mod[n, 4]; m=(n-r)/4; q=Quotient[n, 2]; n! + q!*2^q + 2*If[r <= 1, (2m)!/m!, 0])/4; Array[a, 23] (* Jean-François Alcover, Dec 06 2015, adapted from PARI *)
  • PARI
    { a(n) = ( n! + (n\2)! * 2^(n\2) + 2*if(n%4<=1, (2*(n\4))!/(n\4)! ) )/4; }

Formula

For n=4m or n=4m+1, a(n) = (n! + (2m)!*2^(2*m) + (2m)!/m!)/4.
For n=4m+2 or n=4m+3, a(n) = (n! + (2m+1)!*2^(2*m+1))/4.
a(n) = 2*A000903(n) - A000900(n) - A000902(floor(n/2)).
For n>1, a(n) = 2*A000903(n) - A000085(n)/2.
a(n) = (P(n)+G(n)+2*R(n))/4, where P,G,R are defined in Robinson (1976). See also Maple code in A000903.
Showing 1-3 of 3 results.