cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 15 results. Next

A000899 Number of solutions to the rook problem on an n X n board having a certain symmetry group (see Robinson for details).

Original entry on oeis.org

0, 0, 0, 1, 9, 70, 571, 4820, 44676, 450824, 4980274, 59834748, 778230060, 10896609768, 163456629604, 2615335902176, 44460874280032, 800296440705472, 15205636325496568, 304112744618157872, 6386367741011250672
Offset: 1

Views

Author

Keywords

References

  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000900.

Programs

  • Maple
    For Maple program see A000903.
  • Mathematica
    a[n_] := ((n+1)! - (2*Floor[(n+1)/2])!! - 2*Sum[Binomial[n+1, 2*k]*(2*k-1)!!, {k, 0, (n+1)/2}] + 2*Sum[2^k*BellB[k]*StirlingS1[Floor[(n+1)/2], k], {k, 0, Floor[(n+1)/2]}])/8; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 23 2013, from explicit formulas *)

Formula

a(n)=(A000142(n)-2*A000085(n)-A037223(n)+2*A000898(floor(n/2)))/8 (all of which have explicit formulas).
For asymptotics see the Robinson paper.

Extensions

More terms from Vladeta Jovovic, May 09 2000

A000903 Number of inequivalent ways of placing n nonattacking rooks on n X n board up to rotations and reflections of the board.

Original entry on oeis.org

1, 1, 2, 7, 23, 115, 694, 5282, 46066, 456454, 4999004, 59916028, 778525516, 10897964660, 163461964024, 2615361578344, 44460982752488, 800296985768776, 15205638776753680, 304112757426239984, 6386367801916347184
Offset: 1

Views

Author

Keywords

Examples

			For n=4 the 7 solutions may be taken to be 1234,1243,1324,1423,1432,2143,2413.
		

References

  • L. C. Larson, The number of essentially different nonattacking rook arrangements, J. Recreat. Math., 7 (No. 3, 1974), circa pages 180-181.
  • R. C. Read, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Z. Stankova and J. West, A new class of Wilf-equivalent permutations, J. Algeb. Combin., 15 (2002), 271-290.

Crossrefs

Programs

  • Maple
    Maple programs for A000142, A037223, A122670, A001813, A000085, A000898, A000407, A000902, A000900, A000901, A000899, A000903
    P:=n->n!; # Gives A000142
    G:=proc(n) local k; k:=floor(n/2); k!*2^k; end; # Gives A037223, A000165
    R:=proc(n) local m; if n mod 4 = 2 or n mod 4 = 3 then RETURN(0); fi; m:=floor(n/4); (2*m)!/m!; end; # Gives A122670, A001813
    unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085
    B:=proc(n) option remember; if n <= 1 then RETURN(1); fi; if n mod 2 = 1 then RETURN(B(n-1)); fi; 2*B(n-2) + (n-2)*B(n-4); end; # Gives A000898 (doubled up)
    rho:=n->R(n)/2; # Gives A000407, aerated
    beta:=n->B(n)/2; # Gives A000902, doubled up
    delta:=n->(D(n)-B(n))/2; # Gives A000900
    unprotect(gamma); gamma:=n-> if n <= 1 then RETURN(0) else (G(n)-B(n)-R(n))/4; fi; # Gives A000901, doubled up
    alpha:=n->P(n)/8-G(n)/8+B(n)/4-D(n)/4; # Gives A000899
    unprotect(sigma); sigma:=n-> if n <= 1 then RETURN(1); else P(n)/8+G(n)/8+R(n)/4+D(n)/4; fi; #Gives A000903
  • Mathematica
    c[n_] := Floor[n/2]! 2^Floor[n/2];
    r[n_] := If[Mod[n, 4] > 1, 0, m = Floor[n/4]; If[m == 0, 1, (2 m)!/m!]];
    d[0] = d[1] = 1; d[n_] := d[n] = (n - 1)d[n - 2] + d[n - 1];
    a[1] = 1; a[n_] := (n! + c[n] + 2 r[n] + 2 d[n])/8;
    Array[a, 21] (* Jean-François Alcover, Apr 06 2011, after Matthias Engelhardt, further improved by Robert G. Wilson v *)

Formula

If n>1 then a(n) = 1/8 * (F(n) + C(n) + 2 * R(n) + 2 * D(n)), where F(n) = A000142(n) [all solutions, i.e., factorials], C(n) = A037223(n) [central symmetric solutions], R(n) = A037224(n) [rotationally symmetric solutions] and D(n) = A000085(n) [symmetric solutions by reflection at a diagonal]. - Matthias Engelhardt, Apr 05 2000
For asymptotics see the Robinson paper.

Extensions

More terms from David W. Wilson, Jul 13 2003

A037224 Number of permutations p of {1,2,3...,n} that are fixed points under the operation of first reversing p, then taking the inverse.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 12, 12, 0, 0, 120, 120, 0, 0, 1680, 1680, 0, 0, 30240, 30240, 0, 0, 665280, 665280, 0, 0, 17297280, 17297280, 0, 0, 518918400, 518918400, 0, 0, 17643225600, 17643225600, 0, 0, 670442572800, 670442572800, 0, 0, 28158588057600
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

A122670 is an essentially identical sequence.
Also the number of rotationally symmetric solutions to non-attacking rooks problem on an n X n board.
Reversal of a permutation reflects the associated permutation matrix through an axis parallel to its sides, while inversion reflects the matrix through its main diagonal. The composition of these two operations is rotation by 90 degrees, and so permutations fixed by this composition correspond to rotationally symmetric rook diagrams by taking the associated permutation matrix. [Ian Duff, Mar 09 2007 and Joel B. Lewis, Jun 10 2009]
Equivalently, the number of permutations fixed by first inverting and then reversing. We may also replace "reversing" with "complementing" in the preceding sentences, where the complement of (w(1), ..., w(n)) is (n + 1 - w(1), ..., n + 1 - w(n)). [Joel B. Lewis, Jun 10 2009]

Examples

			Let p be the permutation {11,1,9,3,7,5,8,6,10,4,12,2} of {1,2,3,..,12}. Then the reverse Rp of p is {2,12,4,10,6,8,5,7,3,9,1,11} and the inverse IRp of Rp is {11,1,9,3,7,5,8,6,10,4,12,2}. Thus p counts as one of the a(12)=120 fixed-points for n=12.
		

Crossrefs

Programs

  • Maple
    a:= n-> `if`(irem(n, 4, 'm')>1, 0,
            `if`(m=0, 1, (2*m-1)! * 2/(m-1)!)):
    seq(a(n), n=1..99);  # Alois P. Heinz, Jan 21 2011
  • Mathematica
    {1}~Join~Table[If[MemberQ[{0, 1}, Mod[n, 4]], (2 # - 1)!*2/(# - 1)! &[Floor[n/4]], 0], {n, 2, 44}] (* Michael De Vlieger, Oct 05 2016 *)
  • PARI
    a(n)=
    {
        if ( n%4>=2, return(0) );
        n = n\4;
        if ( n==0, return(1) );
        return( (2*n-1)!*2/(n-1)! );
    }
    vector(55,n,a(n)) /* Joerg Arndt, Jan 21 2011 */

Formula

a(4n) = a(4n+1) = (2n-1)!*2/(n-1)!, a(4n+2) = a(4n+3) = 0.

Extensions

Edited by N. J. A. Sloane, Jun 12 2009, incorporating comments from John W. Layman, Sep 17 2004

A055634 2-adic factorial function.

Original entry on oeis.org

1, -1, 1, -3, 3, -15, 15, -105, 105, -945, 945, -10395, 10395, -135135, 135135, -2027025, 2027025, -34459425, 34459425, -654729075, 654729075, -13749310575, 13749310575, -316234143225, 316234143225, -7905853580625, 7905853580625, -213458046676875, 213458046676875
Offset: 0

Views

Author

Michael Somos, Jun 06 2000

Keywords

Comments

Also known as Morita's 2-adic gamma function. - Harry Richman, Jul 26 2023

References

  • Serge Lang, Cyclotomic Fields I and II, Springer-Verlag, 1990, p. 315.

Crossrefs

Programs

  • Magma
    /* Based on Gauss factorial n_2!: */ k:=2; [IsZero(n) select 1 else (-1)^n*&*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Mathematica
    a[ n_] := If[ n < 0, 0, n! (-1)^n / (n - Mod[n, 2])!!]; (* Michael Somos, Jun 30 2018 *)
    4[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 - x) Exp[x^2/2], {x, 0, n}]]; (* Michael Somos, Jun 30 2018 *)
  • PARI
    {a(n) = if( n<1, 1, -if( n%2, n * a(n-1), a(n-1)))};
    
  • PARI
    a(n)=(-1)^n*(n=bitor(n-1,1))!/(n\2)!>>(n\2) \\ Charles R Greathouse IV, Oct 01 2012
    
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    def A055634(n): return (-1)^n*Gauss_factorial(n, 2)
    [A055634(n) for n in (0..28)]  # Peter Luschny, Oct 01 2012
    

Formula

a(2*n) = -a(2*n - 1) = (2*n - 1)!!
a(n) = (-1)^n*n!/A037223(n), A037223(n) = 2^floor(n/2)*floor(n/2)!. Exponential generating function: (1-x)*exp(x^2/2). - Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002

A033148 Number of rotationally symmetric solutions for queens on n X n board.

Original entry on oeis.org

1, 0, 0, 2, 2, 0, 0, 0, 0, 0, 0, 8, 8, 0, 0, 64, 128, 0, 0, 480, 704, 0, 0, 3328, 3264, 0, 0, 32896, 43776, 0, 0, 406784, 667904, 0, 0, 5845504, 8650752, 0, 0, 77184000, 101492736, 0, 0, 1261588480, 1795233792, 0, 0, 21517426688, 35028172800, 0, 0, 406875119616, 652044443648, 0, 0, 8613581094912, 12530550128640, 0, 0, 194409626533888, 291826098503680, 0, 0
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

Comments

From Don Knuth, Jul 17 2015: (Start)
Ahrens proved that a(n)=0 unless n=4k or 4k+1. He also proved that in the latter case, a(n) is a multiple of 2^k. He found all solutions when n was less than 20.
Kraitchik carried the calculations further (for n less than 28). In his book he tabulated only the values a(n)/2^k. He had correct entries for n=21 and n=25, but his values for n=20 and n=24 were 1 too small -- of course he had calculated everything by hand! (End)

References

  • W. Ahrens, Mathematische Unterhaltungen und Spiele, 2nd edition, volume 1, Teubner, 1910, pages 249-258.
  • Maurice Kraitchik, Le problème des reines, Bruxelles: L'Échiquier, 1926, page 18.

Crossrefs

Extensions

More terms from Jieh Hsiang and YuhPyng Shieh (arping(AT)turing.csie.ntu.edu.tw), May 20 2002

A032522 Number of point symmetric solutions to non-attacking queens problem on n X n board.

Original entry on oeis.org

1, 0, 0, 2, 2, 4, 8, 4, 16, 12, 48, 80, 136, 420, 1240, 3000, 8152, 18104, 44184, 144620, 375664, 1250692, 3581240, 11675080, 34132592, 115718268, 320403024, 1250901440, 3600075088, 14589438024, 43266334696, 181254386312
Offset: 1

Views

Author

Miklos SZABO (mike(AT)ludens.elte.hu)

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • R. J. Walker, An enumerative technique for a class of combinatorial problems, pp. 91-94 of Proc. Sympos. Applied Math., vol. 10, Amer. Math. Soc., 1960.

Crossrefs

Extensions

More terms for n = 33..36 from W. Schubert, Jul 31 2009

A249130 Triangular array: row n gives the coefficients of the polynomial p(n,x) defined in Comments.

Original entry on oeis.org

1, 2, 1, 2, 2, 1, 8, 6, 2, 1, 8, 16, 10, 2, 1, 48, 44, 28, 16, 2, 1, 48, 144, 104, 40, 22, 2, 1, 384, 400, 368, 232, 56, 30, 2, 1, 384, 1536, 1232, 688, 408, 72, 38, 2, 1, 3840, 4384, 5216, 3552, 1248, 708, 92, 48, 2, 1, 3840, 19200, 16704, 12096, 7632, 1968, 1088, 112, 58, 2, 1
Offset: 0

Views

Author

Clark Kimberling, Oct 22 2014

Keywords

Comments

The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + 2*floor((n+1)/2)/f(n-1,x), where f(0,x) = 1.
(Sum of numbers in row n) = A249131(n) for n >= 0.
(Column 1) = A037223.

Examples

			f(0,x) = 1/1, so that p(0,x) = 1;
f(1,x) = (2 + x)/1, so that p(1,x) = 2 + x;
f(2,x) = (2 + 2*x + x^2)/(3 + x), so that p(2,x) = 2 + 2*x + x^2.
First 6 rows of the triangle of coefficients:
  1
  2    1
  2    2    1
  8    6    2    1
  8    16   10   2    1
  48   44   28   16   2   1
		

Crossrefs

Programs

  • Mathematica
    z = 15; p[x_, n_] := x + 2 Floor[n/2]/p[x, n - 1]; p[x_, 1] = 1;
    t = Table[Factor[p[x, n]], {n, 1, z}]
    u = Numerator[t]
    TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249130 array *)
    Flatten[CoefficientList[u, x]] (* A249130 sequence *)

A076051 Sum of product of odd numbers <= n and the product of even numbers <= n.

Original entry on oeis.org

2, 3, 5, 11, 23, 63, 153, 489, 1329, 4785, 14235, 56475, 181215, 780255, 2672145, 12348945, 44781345, 220253985, 840523635, 4370620275, 17465201775, 95498916975, 397983749625, 2278224696825, 9867844134225, 58917607974225
Offset: 1

Views

Author

Emrehan Halici (emrehan(AT)halici.com.tr), Oct 30 2002

Keywords

Crossrefs

Programs

  • Mathematica
    A037223[n_] := 2^(Floor[n/2])*(Floor[n/2])!; Table[A037223[n] + n!/A037223[n] , {n,1,50}] (* G. C. Greubel, May 23 2017 *)
    With[{nn = 25}, CoefficientList[Series[1 + x + (1 + x + x^2) *(Exp[x^2/2] *(1 + Sqrt[Pi/2]*Erf[x/Sqrt[2]])), {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 25 2017 *)
  • PARI
    for(n=1, 50, print1(2^(floor(n/2))*(floor(n/2))! + n!/(2^(floor(n/2))*(floor(n/2))!), ", ")) \\ G. C. Greubel, May 23 2017

Formula

a(n) = o(n)+ e(n) where; o(n)=the product of odd numbers from 1 to n e(n)=the product of even numbers from 2 to n.
From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002: (Start)
a(n) = A060696(n+1).
a(n) = A037223(n) + abs(A055634(n)).
a(n) = A037223(n) + n! / A037223(n), where A037223(n) = 2^floor(n/2) * floor(n/2)!, for n>=2.
a(1)=2, a(2)=3, a(3)=5, a(n) = (n-1)*a(n-2) + (n-2)!! for n >= 4.
E.g.f.: 1 + x + (1+x+x^2)*(exp(x^2/2)*(1+sqrt(Pi/2)*erf(x/sqrt(2)))), where erf denotes the error function. (End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
a(1) corrected by G. C. Greubel, May 23 2017

A155517 Triangle read by rows: T(n,k) is the number of permutations p of {1,2,...,n} for which the number of j < ceiling(n/2) such that p(j) + p(n+1-j) = n+1 is equal to k (n>=1; 0<=k <=ceiling(n/2)).

Original entry on oeis.org

0, 1, 0, 2, 4, 0, 2, 16, 0, 8, 64, 48, 0, 8, 384, 288, 0, 48, 2880, 1536, 576, 0, 48, 23040, 12288, 4608, 0, 384, 208896, 115200, 30720, 7680, 0, 384, 2088960, 1152000, 307200, 76800, 0, 3840, 23193600, 12533760, 3456000, 614400, 115200, 0, 3840, 278323200
Offset: 1

Views

Author

Emeric Deutsch, Jan 26 2009

Keywords

Comments

For the permutation 31756284 of S_8 we have k=2 because p(2) + p(7) = 1+8 = 9 and p(3) + p(6) = 7+2 = 9; for the permutation 3214756 of S_7 we have k=2 because p(3) + p(5) = 1+7 = 8 and p(4) + p(4) = 4+4 = 8.
Row sums are the factorial numbers (A000142).
Row n contains 1 + ceiling(n/2)entries.
T(2n,n) = n!*2^n = A037223(2n) = number of centrosymmetric permutations in S[2n];
T(2n+1,n+1) = n!*2^n = A037223(2n+1) = number of centrosymmetric permutations in S[2n+1].
T(n,0) = A155518(n).
Sum_{k=0..ceiling(n/2)} k*T(n,k) = A155519(n).

Examples

			T(4,2)=8 because we have 1234, 4231, 1324, 4321, 2143, 3142, 2413 and 3412.
Triangle starts:
    0,   1;
    0,   2;
    4,   0,   2;
   16,   0,   8;
   64,  48,   0,   8;
  384, 288,   0,  48;
		

Crossrefs

Programs

  • Maple
    g[0] := 1: g[1] := 0: for n from 2 to 20 do g[n] := (2*(n-1))*(g[n-1]+g[n-2]) end do: T := proc (n, k) if `mod`(n, 2) = 0 then 2^((1/2)*n)*factorial((1/2)*n)*g[(1/2)*n-k]*binomial((1/2)*n, k) else 2^((1/2)*n-1/2)*factorial((1/2)*n-1/2)*g[(1/2)*n+1/2-k]*binomial((1/2)*n+1/2, k) end if end proc: for n to 12 do seq(T(n, k), k = 0 .. ceil((1/2)*n)) end do;

Formula

T(2n,k) = n!*2^n*A055140(n,k);
T(2n-1,k) = (n-1)!*2^(n-1)*A055140(n,k);
here A055140(n,k) = A053871(n-k)*binomial(n,k), where g(n) = A053871(n) is defined by g(0)=1, g(1)=0, g(n) = 2(n-1)(g(n-1)+g(n-2)).

A198890 Irregular triangle read by rows: row n gives expansion of g.f. for descending plane partitions of order n with no special parts and weight equal to sum of the parts.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 2, 2, 3, 2, 4, 3, 4, 4, 4, 5, 4, 5, 5, 4, 6, 4, 5, 5, 4, 5, 4, 4, 4, 3, 4, 2, 3, 2, 2, 2, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 2, 3, 2, 4, 3, 5, 5, 7, 6, 8, 8, 9, 10, 12, 10, 14, 12, 14, 15, 16, 15, 18, 16, 18, 18, 20, 17, 21, 18, 20, 20, 20, 18, 21, 17, 20, 18, 18, 16, 18, 15, 16, 15, 14, 12, 14, 10, 12, 10, 9, 8, 8, 6, 7, 5, 5, 3, 4, 2, 3, 2, 1, 1, 1, 0, 1
Offset: 1

Views

Author

N. J. A. Sloane, Oct 30 2011

Keywords

Examples

			Rows 1 through 5 are
  1
  1, 0, 1
  1, 0, 1, 1, 0, 1, 1, 0, 1
  1, 0, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1
  1, 0, 1, 1, 1, 2, 2, 2, 3, 2, 4, 3, 4, 4, 4, 5, 4, 5, 5, 4, 6, 4, 5, 5, 4, 5, 4, 4, 4, 3, 4, 2, 3, 2, 2, 2, 1, 1, 1, 0, 1
From _Peter Bala_, May 29 2022: (Start)
Row 3 generating polynomial:
   Permutation p    Pairs (p(i),p(j)) with p(i) > p(j)       inv_1(p)
       123                       -                              0
       132                     (3,2)                            3
       213                     (2,1)                            2
       231                 (2,1), (3,1)                         5
       312                 (3,1), (3,2)                         6
       321              (3,2), (3,1), (2,1)                     8
Hence R(3,x) = x^0 + x^2 + x^3 + x^5 + x^6 + x^8 = (1 + x^2)*(1 + x^3 + x^6) = ((1 - x^4)/(1 - x^2)) * (1 - x^9)/(1 - x^3). (End)
		

Crossrefs

Row sums give A000142 (factorial numbers).

Programs

  • Maple
    s:=(k,q)->add(q^i,i=0..k-1);
    f:=n->mul(s(i,q^i),i=1..n);
    g:=n->seriestolist(series(f(n),q,1000));
    for n from 1 to 10 do lprint(g(n)); od:
    # alternative program
    T := proc (n, k) option remember;
    if n = 0 or n = 1 and k = 0 then 1
    elif k > ((1/3)*n-1/3)*n*(n+1) then 0
    elif k < 0 then 0
    else T(n, k-n) + T(n-1, k) - T(n-1, k-n^2) fi end:
    seq(print(seq(T(n, k), k = 0..(1/3)*(n-1)*n*(n+1))), n = 1..6); # Peter Bala, Jun 07 2022

Formula

From Peter Bala, May 29 2022: (Start)
T(0, 0) = 1; T(1, 0) = 1.
T(n, k) = 0 for k < 0 or k > (1/3)*(n+1)*n*(n-1).
T(n, k) = Sum_{j = 0..n-1} T(n-1, k-n*j); T(n, k) = T(n, k-n) + T(n-1, k) - T(n-1, k-n^2).
T(n,k) = T(n, (1/3)*(n+1)*n*(n-1) - k).
Sum_{k = 0..(1/3)*(n+1)*n*(n-1)} T(n, k) = n!.
Sum_{k = 0..(1/3)*(n+1)*n*(n-1)} (-1)^k*T(n, k) = A037223(n).
Sum_{k = 0..(1/3)*(n+1)*n*(n-1)} k*T(n, k) = (1/3)*n!*binomial(n-1,2) = 2*A001754(n) for n >= 1.
n-th row polynomial R(n,x) = Product_{j = 1..n} (1 - x^(j^2))/(1 - x^j).
let k be a nonnegative integer. Let p = p(1)p(2)...p(n) be a permutation of {1,2,...,n}. We define the k-th inversion number of p by inv_k(p) = Sum_{pairs (i,j), 1 <= i < j <= n, such that p(i) > p(j)} (p(i))^k. The n-th row polynomial R(n,x) equals Sum_{permutations p of {1,2,...,n} } x^(inv_1(p)). An example is given below. For the case k = 0 see A008302.
The x-adic limit of R(n,x) as n -> 00 is the g.f. of A087153. (End)

Extensions

Name clarified by Ludovic Schwob, Jun 15 2023
Showing 1-10 of 15 results. Next