A000017 Erroneous version of A032522.
1, 0, 0, 2, 2, 4, 8, 4, 16, 12, 48, 80, 136, 420, 1240, 2872, 7652, 18104, 50184
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a(4) = 1: +---------+ | . . Q . | | Q . . . | | . . . Q | | . Q . . | +---------+ a(5) = 2: +-----------+ +-----------+ | . . . Q . | | . . . Q . | | . Q . . . | | Q . . . . | | . . . . Q | | . . Q . . | | . . Q . . | | . . . . Q | | Q . . . . | | . Q . . . | +-----------+ +-----------+ a(6) = 1: +-------------+ | . . . . Q . | | . . Q . . . | | Q . . . . . | | . . . . . Q | | . . . Q . . | | . Q . . . . | - _Hugo Pfoertner_, Mar 17 2019 +-------------+ a(7) = 6: +---------------+ +---------------+ +---------------+ | Q . . . . . . | | Q . . . . . . | | . Q . . . . . | | . . Q . . . . | | . . . Q . . . | | . . . Q . . . | | . . . . Q . . | | . . . . . . Q | | Q . . . . . . | | . . . . . . Q | | . . Q . . . . | | . . . . . . Q | | . Q . . . . . | | . . . . . Q . | | . . . . Q . . | | . . . Q . . . | | . Q . . . . . | | . . Q . . . . | | . . . . . Q . | | . . . . Q . . | | . . . . . Q . | +---------------+ +---------------+ +---------------+ . +---------------+ +---------------+ +---------------+ | . Q . . . . . | | . Q . . . . . | | . Q . . . . . | | . . . . Q . . | | . . . . Q . . | | . . . . . Q . | | Q . . . . . . | | . . . . . . Q | | . . Q . . . . | | . . . Q . . . | | . . . Q . . . | | . . . . . . Q | | . . . . . . Q | | Q . . . . . . | | . . . Q . . . | | . . Q . . . . | | . . Q . . . . | | Q . . . . . . | | . . . . . Q . | | . . . . . Q . | | . . . . Q . . | +---------------+ +---------------+ +---------------+ - _Hugo Pfoertner_, Mar 18 2019
[Factorial((n div 2) -1)*2^((n div 2)-1): n in [2..35]]; // Vincenzo Librandi, Nov 17 2018
For Maple program see A000903. # second Maple program: a:= n-> (r-> r!*2^r)(iquo(n, 2)): seq(a(n), n=0..30); # Alois P. Heinz, Dec 23 2013
f[n_]:=Times@@Select[Range[n],EulerPhi[#]<=Floor[#/2]&]; Table[f[n],{n,1,30}] (* Conjectured: Enrique Pérez Herrero, May 31 2012 *)(* This conjecture and also program is WRONG for n=105, Vaclav Kotesovec, Sep 07 2012 *) a[n_] := (2*Floor[n/2])!!; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Dec 23 2013, after N. J. A. Sloane's comment *)
Let p be the permutation {11,1,9,3,7,5,8,6,10,4,12,2} of {1,2,3,..,12}. Then the reverse Rp of p is {2,12,4,10,6,8,5,7,3,9,1,11} and the inverse IRp of Rp is {11,1,9,3,7,5,8,6,10,4,12,2}. Thus p counts as one of the a(12)=120 fixed-points for n=12.
a:= n-> `if`(irem(n, 4, 'm')>1, 0, `if`(m=0, 1, (2*m-1)! * 2/(m-1)!)): seq(a(n), n=1..99); # Alois P. Heinz, Jan 21 2011
{1}~Join~Table[If[MemberQ[{0, 1}, Mod[n, 4]], (2 # - 1)!*2/(# - 1)! &[Floor[n/4]], 0], {n, 2, 44}] (* Michael De Vlieger, Oct 05 2016 *)
a(n)= { if ( n%4>=2, return(0) ); n = n\4; if ( n==0, return(1) ); return( (2*n-1)!*2/(n-1)! ); } vector(55,n,a(n)) /* Joerg Arndt, Jan 21 2011 */
Comments