cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A216919 The Gauss factorial N_n! for N >= 0, n >= 1, square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 24, 3, 2, 1, 1, 120, 3, 2, 1, 1, 1, 720, 15, 8, 3, 2, 1, 1, 5040, 15, 40, 3, 6, 1, 1, 1, 40320, 105, 40, 15, 24, 1, 2, 1, 1, 362880, 105, 280, 15, 24, 1, 6, 1, 1, 1, 3628800, 945, 2240, 105, 144, 5, 24, 3, 2, 1, 1, 39916800, 945
Offset: 1

Views

Author

Peter Luschny, Oct 01 2012

Keywords

Comments

The term is due to Cosgrave & Dilcher. The Gauss factorial should not be confused with the q-factorial [n]_q! which is also called Gaussian factorial.

Examples

			[n\N][0, 1, 2, 3,  4,   5,   6,    7,     8,      9,     10]
------------------------------------------------------------
[  1] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A000142]
[  2] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945 [A055634, A133221]
[  3] 1, 1, 2, 2,  8,  40,  40,  280,  2240,   2240,   22400 [A232980]
[  4] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945
[  5] 1, 1, 2, 6, 24,  24, 144, 1008,  8064,  72576,   72576 [A232981]
[  6] 1, 1, 1, 1,  1,   5,   5,   35,    35,     35,      35 [A232982]
[  7] 1, 1, 2, 6, 24, 120, 720,  720,  5760,  51840,  518400 [A232983]
[  8] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945
[  9] 1, 1, 2, 2,  8,  40,  40,  280,  2240,   2240,   22400
[ 10] 1, 1, 1, 3,  3,   3,   3,   21,    21,    189,     189 [A232984]
[ 11] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A232985]
[ 12] 1, 1, 1, 1,  1,   5,   5,   35,    35,     35,      35
[ 13] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800
		

Crossrefs

A000142(n) = n! = Gauss_factorial(n, 1).
A001147(n) = Gauss_factorial(2*n, 2).
A055634(n) = Gauss_factorial(n, 2)*(-1)^n.
A001783(n) = Gauss_factorial(n, n).
A124441(n) = Gauss_factorial(floor(n/2), n).
A124442(n) = Gauss_factorial(n, n)/Gauss_factorial(floor(n/2), n).
A066570(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n).

Programs

  • Maple
    A:= (n, N)-> mul(`if`(igcd(j, n)=1, j, 1), j=1..N):
    seq(seq(A(n, d-n), n=1..d), d=1..12);  # Alois P. Heinz, Oct 03 2012
  • Mathematica
    GaussFactorial[m_, n_] := Product[ If[ GCD[j, n] == 1, j, 1], {j, 1, m}]; Table[ GaussFactorial[m - n, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
  • PARI
    T(m,n)=prod(k=2, m, if(gcd(k,n)==1, k, 1))
    for(s=1,10,for(n=1,s,print1(T(s-n,n)", "))) \\ Charles R Greathouse IV, Oct 01 2012
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    for n in (1..13): [Gauss_factorial(N, n) for N in (0..10)]
    

Formula

N_n! = product_{1<=j<=N, GCD(j,n)=1} j.

A133221 A001147 with each term repeated.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945, 10395, 10395, 135135, 135135, 2027025, 2027025, 34459425, 34459425, 654729075, 654729075, 13749310575, 13749310575, 316234143225, 316234143225, 7905853580625, 7905853580625, 213458046676875, 213458046676875
Offset: 0

Views

Author

N. J. A. Sloane, Oct 13 2007

Keywords

Comments

Normally such sequences are excluded from the OEIS, but I have made an exception for this one because so many variants of it have occurred in recent submissions.
For n>=2, a(n) = product of odd positive integers <=(n-1). - Jaroslav Krizek, Mar 21 2009
a(n) is, for n>=3, the number of way to choose floor((n-1)/2) disjoint pairs of items from n-1 items. It is then a fortiori the size of the conjugacy class of the reversal permutation [n-1,n-2,n-3,...,3,2,1]=(1 n-1)(2 n-2)(3 n-3)... in the symmetric group on n-1 elements. - Karl-Dieter Crisman, Nov 03 2009

Crossrefs

Appears in A161736. - Johannes W. Meijer, Jun 18 2009

Programs

  • Mathematica
    f[x_] := E^(x^2/2) + Sqrt[Pi/2]*Erfi[x/Sqrt[2]]; CoefficientList[ Series[f[x], {x, 0, 29}], x]*Range[0, 29]! (* Jean-François Alcover, Sep 25 2012, after Sergei N. Gladkovskii *)
    Table[(n - 1 - Mod[n, 2])!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
    Table[((2 n + (-1)^n - 3)/2)!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
  • PARI
    a(n) = my(k = (2*n + (-1)^n - 3)/2); prod(i=0, (k-1)\2, k - 2*i) \\ Iain Fox, Dec 31 2017
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    def A133221(n): return Gauss_factorial(n-1, 2)
    [A133221(n) for n in (0..29)]  # Peter Luschny, Oct 01 2012
    

Formula

E.g.f.: x*U(0) where U(k)= 1 + (2*k+1)/(x - x^4/(x^3 + (2*k+2)*(2*k+3)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
G.f.: 1+x*G(0), where G(k)= 1 + x*(2*k+1)/(1 - x/(x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
a(n) = (2*floor(n/2)-1)!! = (n-1-(n mod 2))!!. - Alois P. Heinz, Sep 24 2024

A232980 The Gauss factorial n_3!.

Original entry on oeis.org

1, 1, 2, 2, 8, 40, 40, 280, 2240, 2240, 22400, 246400, 246400, 3203200, 44844800, 44844800, 717516800, 12197785600, 12197785600, 231757926400, 4635158528000, 4635158528000, 101973487616000, 2345390215168000, 2345390215168000, 58634755379200000, 1524503639859200000, 1524503639859200000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=3; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(3);

A232985 The Gauss factorial n_11!.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 3628800, 43545600, 566092800, 7925299200, 118879488000, 1902071808000, 32335220736000, 582033973248000, 11058645491712000, 221172909834240000, 4644631106519040000, 4644631106519040000, 106826515449937920000, 2563836370798510080000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=11; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(11);

A076051 Sum of product of odd numbers <= n and the product of even numbers <= n.

Original entry on oeis.org

2, 3, 5, 11, 23, 63, 153, 489, 1329, 4785, 14235, 56475, 181215, 780255, 2672145, 12348945, 44781345, 220253985, 840523635, 4370620275, 17465201775, 95498916975, 397983749625, 2278224696825, 9867844134225, 58917607974225
Offset: 1

Views

Author

Emrehan Halici (emrehan(AT)halici.com.tr), Oct 30 2002

Keywords

Crossrefs

Programs

  • Mathematica
    A037223[n_] := 2^(Floor[n/2])*(Floor[n/2])!; Table[A037223[n] + n!/A037223[n] , {n,1,50}] (* G. C. Greubel, May 23 2017 *)
    With[{nn = 25}, CoefficientList[Series[1 + x + (1 + x + x^2) *(Exp[x^2/2] *(1 + Sqrt[Pi/2]*Erf[x/Sqrt[2]])), {x, 0, nn}], x] Range[0, nn]!] (* G. C. Greubel, May 25 2017 *)
  • PARI
    for(n=1, 50, print1(2^(floor(n/2))*(floor(n/2))! + n!/(2^(floor(n/2))*(floor(n/2))!), ", ")) \\ G. C. Greubel, May 23 2017

Formula

a(n) = o(n)+ e(n) where; o(n)=the product of odd numbers from 1 to n e(n)=the product of even numbers from 2 to n.
From Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002: (Start)
a(n) = A060696(n+1).
a(n) = A037223(n) + abs(A055634(n)).
a(n) = A037223(n) + n! / A037223(n), where A037223(n) = 2^floor(n/2) * floor(n/2)!, for n>=2.
a(1)=2, a(2)=3, a(3)=5, a(n) = (n-1)*a(n-2) + (n-2)!! for n >= 4.
E.g.f.: 1 + x + (1+x+x^2)*(exp(x^2/2)*(1+sqrt(Pi/2)*erf(x/sqrt(2)))), where erf denotes the error function. (End)

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)hotmail.com), Nov 01 2002
a(1) corrected by G. C. Greubel, May 23 2017

A185021 a(n) = h(1)*h(2)*...*h(n), where h(i) = i/[g(i/2)*g(i/4)*g(i/8)*...] and g(x) = x if x is an integer and g(x) = 1 otherwise.

Original entry on oeis.org

1, 1, 2, 6, 12, 60, 120, 840, 840, 7560, 15120, 166320, 110880, 1441440, 2882880, 43243200, 10810800, 183783600, 367567200, 6983776800, 2793510720, 58663725120, 117327450240, 2698531355520, 299836817280, 7495920432000, 14991840864000, 404779703328000, 115651343808000, 3353888970432000, 6707777940864000
Offset: 0

Views

Author

Bakir FARHI, Jan 22 2012

Keywords

Comments

Although h(i) is not necessarily an integer, a(n) is.

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<1, 1, h(n)*a(n-1)) end:
    h:= i-> i/mul((t->`if`(t::integer, t, 1))((i/2^j)), j=1..ilog2(i)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Oct 18 2018
  • Mathematica
    a[n_] := a[n] = If[n<1, 1, h[n] a[n-1]];
    h[i_] := i/Product[If[IntegerQ[#], #, 1]&[i/2^j], {j, 1, Log[2, i]}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 13 2018, after Alois P. Heinz *)

Extensions

Edited by N. J. A. Sloane, Apr 10 2012
a(0)=1 prepended by Alois P. Heinz, Oct 18 2018

A232981 The Gauss factorial n_5!.

Original entry on oeis.org

1, 1, 2, 6, 24, 24, 144, 1008, 8064, 72576, 72576, 798336, 9580032, 124540416, 1743565824, 1743565824, 27897053184, 474249904128, 8536498274304, 162193467211776, 162193467211776, 3406062811447296, 74933381851840512, 1723467782592331776, 41363226782215962624, 41363226782215962624
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=5; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(5);
  • Mathematica
    Table[n!/(5^#*#!) &@ Floor[n/5], {n, 0, 25}] (* Michael De Vlieger, Mar 06 2017 *)

Formula

From Robert Israel, Mar 06 2017: (Start)
a(n) = a(n-1) if 5 | n; otherwise n*a(n-1).
a(n) = n!/(5^floor(n/5)*floor(n/5)!). (End)

A185275 Products of the first terms of the arithmetic sequence f(n) defined by f(2^k l) = l^{1 - k} (for k a nonnegative integer and l a positive odd integer).

Original entry on oeis.org

1, 1, 3, 3, 15, 15, 105, 105, 945, 945, 10395, 3465, 45045, 45045, 675675, 675675, 11486475, 11486475, 218243025, 43648605, 916620705, 916620705, 21082276215, 2342475135, 58561878375, 58561878375, 1581170716125, 225881530875, 6550564395375, 6550564395375
Offset: 0

Views

Author

Bakir FARHI, Jan 21 2012

Keywords

Comments

Note that f(n) is not always an integer (for example f(12) = 1/3) but Farhi showed in his paper that the product Product_{i = 1..n} f(i) is always an integer.

Crossrefs

Formula

G.f.: G(0)/x -1/x, where G(k)= 1 + x*(2*k+1)/(1 - x/(x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013

A232982 The Gauss factorial n_6!.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35, 385, 385, 5005, 5005, 5005, 5005, 85085, 85085, 1616615, 1616615, 1616615, 1616615, 37182145, 37182145, 929553625, 929553625, 929553625, 929553625, 26957055125, 26957055125, 835668708875, 835668708875, 835668708875, 835668708875, 29248404810625, 29248404810625
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=6; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..40]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(6);

A232983 The Gauss factorial n_7!.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 720, 5760, 51840, 518400, 5702400, 68428800, 889574400, 889574400, 13343616000, 213497856000, 3629463552000, 65330343936000, 1241276534784000, 24825530695680000, 24825530695680000, 546161675304960000, 12561718532014080000, 301481244768337920000, 7537031119208448000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=7; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(7);
Showing 1-10 of 11 results. Next