A133227 Incorrect duplicate of A133221.
1, 3, 15, 15, 105, 105
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
/* Based on Gauss factorial n_2!: */ k:=2; [IsZero(n) select 1 else (-1)^n*&*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
a[ n_] := If[ n < 0, 0, n! (-1)^n / (n - Mod[n, 2])!!]; (* Michael Somos, Jun 30 2018 *) 4[ n_] := If[ n < 0, 0, n! SeriesCoefficient[ (1 - x) Exp[x^2/2], {x, 0, n}]]; (* Michael Somos, Jun 30 2018 *)
{a(n) = if( n<1, 1, -if( n%2, n * a(n-1), a(n-1)))};
a(n)=(-1)^n*(n=bitor(n-1,1))!/(n\2)!>>(n\2) \\ Charles R Greathouse IV, Oct 01 2012
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) def A055634(n): return (-1)^n*Gauss_factorial(n, 2) [A055634(n) for n in (0..28)] # Peter Luschny, Oct 01 2012
[n\N][0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10] ------------------------------------------------------------ [ 1] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A000142] [ 2] 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945 [A055634, A133221] [ 3] 1, 1, 2, 2, 8, 40, 40, 280, 2240, 2240, 22400 [A232980] [ 4] 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945 [ 5] 1, 1, 2, 6, 24, 24, 144, 1008, 8064, 72576, 72576 [A232981] [ 6] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35 [A232982] [ 7] 1, 1, 2, 6, 24, 120, 720, 720, 5760, 51840, 518400 [A232983] [ 8] 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945 [ 9] 1, 1, 2, 2, 8, 40, 40, 280, 2240, 2240, 22400 [ 10] 1, 1, 1, 3, 3, 3, 3, 21, 21, 189, 189 [A232984] [ 11] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A232985] [ 12] 1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35 [ 13] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800
A:= (n, N)-> mul(`if`(igcd(j, n)=1, j, 1), j=1..N): seq(seq(A(n, d-n), n=1..d), d=1..12); # Alois P. Heinz, Oct 03 2012
GaussFactorial[m_, n_] := Product[ If[ GCD[j, n] == 1, j, 1], {j, 1, m}]; Table[ GaussFactorial[m - n, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
T(m,n)=prod(k=2, m, if(gcd(k,n)==1, k, 1)) for(s=1,10,for(n=1,s,print1(T(s-n,n)", "))) \\ Charles R Greathouse IV, Oct 01 2012
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1) for n in (1..13): [Gauss_factorial(N, n) for N in (0..10)]
sb(2) = 2; sb(3) = 16/9; sb(4) = 128/75; sb(5) = 2048/1225; etc..
[Denominator((2^(4*n-5)*(Factorial(n-1))^4)/((n-1)*(Factorial(2*n-2))^2)): n in [2..20]]; // G. C. Greubel, Sep 26 2018
nmax := 18; for n from 0 to nmax do A001818(n) := (doublefactorial(2*n-1))^2 od: for n from 0 to nmax do A008956(n, 0):=1 od: for n from 0 to nmax do A008956(n, n) := A001818(n) od: for n from 1 to nmax do for m from 1 to n-1 do A008956(n, m) := (2*n-1)^2*A008956(n-1, m-1) + A008956(n-1, m) od: od: for n from 1 to nmax do for m from 0 to n do s(n, m):=0; s(n, m) := s(n, m)+ sum((-1)^k1*A008956(n, n-k1), k1=0..n-m): od: sb1(n+1) := sum(s(n, k1), k1=1..n) * 2/A001818(n); od: seq(sb1(n), n=2..nmax); # End program 1 nmax1 := nmax; for n from 0 to nmax1 do A001147(n):= doublefactorial(2*n-1) od: for n from 0 to nmax1/2 do A133221(2*n+1) := A001147(n); A133221(2*n) := A001147(n) od: for n from 0 to nmax1 do A002474(n) := 2^(2*n+1)*n!*(n+1)! od: for n from 1 to nmax1 do A161738(n) := ((product((2*n-3-2*k1), k1=0..floor(n/2-1)))) od: for n from 2 to nmax1 do sb2(n) := A002474(n-2) / (A161738(n)*A133221(n-1))^2 od: seq(sb2(n), n=2..nmax1); # End program 2 # Above Maple programs edited by Johannes W. Meijer, Sep 25 2012 r := n -> (1/Pi)*(2*n - 2)*((n - 3/2)!/(n - 1)!)^2: a := n -> numer(simplify(r(n))): seq(a(n), n = 1..21); # Peter Luschny, Feb 12 2025
sb[2]=2; sb[n_] := sb[n] = sb[n-1]*4*(n-1)*(n-2)/(2n-3)^2; Table[sb[n] // Denominator, {n, 2, 20}] (* Jean-François Alcover, Aug 14 2017 *)
{a(n) = if( n<2, 0, n--; numerator( binomial( 2*n, n)^2 * n / 2^(n+1) ))}; /* Michael Somos, May 09 2011 */
Array begins: ============================================================= n\m | 0 1 2 3 4 5 6 ----+-------------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 1 1 3 3 15 15 ... 2 | 1 1 2 10 40 296 1576 ... 3 | 1 3 10 84 852 11580 197640 ... 4 | 1 3 40 852 22368 822528 38772864 ... 5 | 1 15 296 11580 822528 84961440 12002446080 ... 6 | 1 15 1576 197640 38772864 12002446080 5429866337280 ... ...
Array begins: ====================================================== n\m | 0 1 2 3 4 5 6 ----+------------------------------------------------- 0 | 1 1 1 1 1 1 1 ... 1 | 1 1 1 3 3 15 15 ... 2 | 1 1 2 4 16 56 376 ... 3 | 1 3 4 72 132 7020 17280 ... 4 | 1 3 16 132 2016 44928 1551744 ... 5 | 1 15 56 7020 44928 22615200 243319680 ... 6 | 1 15 376 17280 1551744 243319680 61903180800 ... ...
Comments