cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001783 n-phi-torial, or phi-torial of n: Product k, 1 <= k <= n, k relatively prime to n.

Original entry on oeis.org

1, 1, 2, 3, 24, 5, 720, 105, 2240, 189, 3628800, 385, 479001600, 19305, 896896, 2027025, 20922789888000, 85085, 6402373705728000, 8729721, 47297536000, 1249937325, 1124000727777607680000, 37182145, 41363226782215962624, 608142583125, 1524503639859200000
Offset: 1

Views

Author

Keywords

Comments

In other words, a(1) = 1 and for n >= 2, a(n) = product of the phi(n) numbers < n and relatively prime to n.
From Gauss's generalization of Wilson's theorem (see Weisstein link) it follows that, for n>1, a(n) == -1 (mod n) if and only if there exists a primitive root modulo n (cf. the Hardy and Wright reference, Theorem 129. p. 102). - Vladimir Shevelev, May 11 2012
Islam & Manzoor prove that a(n) is an injection for n > 1, see links. In other words, if a(m) = a(n), and min(m, n) > 1, then m = n. - Muhammed Hedayet, May 25 2016
Cosgrave & Dilcher propose the name Gauss factorial. Indeed the sequence is the special case N = n of the Gauss factorial N_n! = Product_{1<=j<=N, gcd(j, n)=1} j (see A216919). - Peter Luschny, Feb 07 2018

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Main diagonal gives A216919.

Programs

  • Haskell
    a001783 = product . a038566_row
    -- Reinhard Zumkeller, Mar 04 2012, Aug 26 2011
    
  • Maple
    A001783 := proc(n) local i,t1; t1 := 1; for i from 1 to n do if gcd(i,n)=1 then t1 := t1*i; fi; od; t1; end;
    A001783 := proc(n) local i; mul(i,i=select(k->igcd(n,k)=1,[$1..n])) end; # Peter Luschny, Oct 30 2010
  • Mathematica
    A001783[n_]:=Times@@Select[Range[n],CoprimeQ[n,#]&];
    Array[A001783,20] (* Enrique Pérez Herrero, Jul 23 2011 *)
  • PARI
    A001783(n)=prod(k=2,n-1,k^(gcd(k,n)==1))  \\ M. F. Hasler, Jul 23 2011
    
  • PARI
    a(n)=my(f=factor(n),t=n^eulerphi(f)); fordiv(f,d, t*=(d!/d^d)^moebius(n/d)); t \\ Charles R Greathouse IV, Nov 05 2015
    
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    def A001783(n): return Gauss_factorial(n, n)
    [A001783(n) for n in (1..25)] # Peter Luschny, Oct 01 2012

Formula

a(n) = n^phi(n)*Product_{d|n} (d!/d^d)^mu(n/d); phi=A000010 is the Euler totient function and mu=A008683 the Moebius function (Tom M. Apostol, Introduction to Analytic Number Theory, New York 1984, p. 48). - Franz Vrabec, Jul 08 2005
a(n) = n!/A066570(n). - R. J. Mathar, Mar 10 2011
A001221(a(n)) = A000720(n) - A001221(n) = A048865(n).
A006530(a(n)) = A136548(n). - Enrique Pérez Herrero, Jul 23 2011
a(n) = A124441(n)*A124442(n). - M. F. Hasler, Jul 23 2011
a(n) == (-1)^A211487(n) (mod n). - Vladimir Shevelev, May 13 2012
a(n) = A250269(n) / A193679(n). - Daniel Suteu, Apr 05 2021

Extensions

More terms from James Sellers, Dec 23 1999

A066570 Product of numbers <= n that have a prime factor in common with n.

Original entry on oeis.org

1, 2, 3, 8, 5, 144, 7, 384, 162, 19200, 11, 1244160, 13, 4515840, 1458000, 10321920, 17, 75246796800, 19, 278691840000, 1080203040, 899245670400, 23, 16686729658368000, 375000, 663152807116800, 7142567040, 209964381084057600, 29, 1229978843118305280000000
Offset: 1

Views

Author

Amarnath Murthy, Dec 19 2001

Keywords

Comments

Empty product, 1, for n = 1.
a(p) = p if p is a prime.

Examples

			a(7) = 7, a(9) = 3*6*9 = 162.
		

Crossrefs

Programs

  • Maple
    A066570 := proc(n) local i; mul(i,i=remove(k->igcd(n,k)=1,[$1..n])) end: # Peter Luschny, Oct 11 2011
  • Mathematica
    Table[Times @@ Select[Range[2, n], GCD[#, n] > 1 &], {n, 30}] (* T. D. Noe, Oct 04 2012 *)
  • PARI
    a(n) = prod(k=1, n, if (gcd(k, n) != 1, k, 1)); \\ Michel Marcus, Nov 02 2017
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    def A066570(n): return Gauss_factorial(n, 1)/Gauss_factorial(n, n)
    [A066570(n) for n in (1..30)] # Peter Luschny, Oct 02 2012
    

Formula

a(n) = n!/A001783(n).
a(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n) (see A216919). - Peter Luschny, Oct 02 2012

A103131 The product of the residues in [1,n] relatively prime to n, taken modulo n.

Original entry on oeis.org

0, 1, -1, -1, -1, -1, -1, 1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, 1, 1, -1, -1, 1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, 1, 1, -1, 1, -1, -1, 1, 1, 1, 1, -1, 1, -1, -1, -1, 1, 1, -1, 1, 1, -1, 1, 1, 1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1
Offset: 1

Views

Author

Eric W. Weisstein, Jan 23 2005

Keywords

Comments

Old name was: Minimal residue (in absolute value) of A001783(n) (mod n).
If the positive representation for integers modulo n is used this is A160377. Here the symmetric (or minimal) representation for the integers modulo n is used.
From Gauss's generalization of Wilson's theorem (see Weisstein link) it follows that, for n>1, a(n) = -1 if and only if there exists a primitive root modulo n (cf. the Hardy and Wright reference, Theorem 129. p. 102). (Adapted from a comment by Vladimir Shevelev in A001783). - Peter Luschny, Oct 20 2012

Examples

			The residues in [1, 22] relatively prime to 22 are [1, 3, 5, 7, 9, 13, 15, 17, 19, 21] and the product of those residues is -1 modulo 22.
		

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Fifth ed., Clarendon Press, Oxford, 2003, Theorem 129, p. 102.

Crossrefs

Programs

Formula

For n>2, a(n)=-1 if A060594(n)=2, or equivalently if n is in A033948; otherwise a(n)=1. - Max Alekseyev, May 26 2009; edited by Peter Luschny, May 25 2017.
a(n) = Gauss_factorial(n, n) modulo n. (Definition of the Gauss factorial in A216919.) - Peter Luschny, Oct 20 2012
For n > 2, a(n) = (-1)^A211487(n). (See Max Alekseyev's formula above.) - Antti Karttunen, Aug 22 2017

Extensions

Definition rewritten by Max Alekseyev, May 26 2009
New name from Peter Luschny, Oct 20 2012
a(2) set to 1 by Peter Luschny, May 25 2017

A160377 Phi-torial of n (A001783) modulo n.

Original entry on oeis.org

0, 1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 1, 12, 13, 1, 1, 16, 17, 18, 1, 1, 21, 22, 1, 24, 25, 26, 1, 28, 1, 30, 1, 1, 33, 1, 1, 36, 37, 1, 1, 40, 1, 42, 1, 1, 45, 46, 1, 48, 49, 1, 1, 52, 53, 1, 1, 1, 57, 58, 1, 60, 61, 1, 1, 1, 1, 66, 1, 1, 1, 70, 1, 72, 73, 1, 1, 1, 1, 78, 1, 80, 81, 82, 1, 1, 85, 1, 1
Offset: 1

Views

Author

J. M. Bergot, May 11 2009

Keywords

Comments

Is a(n)<> 1 iff n in A033948, n>2? [R. J. Mathar, May 21 2009]
Same as A103131, except there -1 appears instead of n-1. By Gauss's generalization of Wilson's theorem, a(n)=-1 means n has a primitive root (n in A033948) and a(n)=1 means n has no primitive root (n in A033949). [T. D. Noe, May 21 2009]

Examples

			Phi-torial of 12 equals 1*5*7*11=385 which leaves a remainder of 1 when divided by 12.
Phi-torial of 14 equals 1*3*5*9*11*13=19305 which leaves a remainder of 13 when divided by 14.
		

Crossrefs

Cf. A124740 (one of just four listing "product of coprimes").

Programs

  • Maple
    copr := proc(n) local a,k ; a := {1} ; for k from 2 to n-1 do if gcd(k,n) = 1 then a := a union {k} ; fi; od: a ; end:
    A001783 := proc(n) local c; mul(c,c= copr(n)) ; end:
    A160377 := proc(n) A001783(n) mod n ; end: seq( A160377(n),n=1..100) ; # R. J. Mathar, May 21 2009
    A160377 := proc(n) local k, r; r := 1:
    for k to n do if igcd(n,k) = 1 then r := modp(r*k, n) fi od;
    r end: seq( A160377(i), i=1..88); # Peter Luschny, Oct 20 2012
  • Mathematica
    Table[nn = n; a = Select[Range[nn], CoprimeQ[#, nn] &];
    Mod[Apply[Times, a], nn], {n, 1, 88}] (* Geoffrey Critzer, Jan 03 2015 *)
  • Sage
    def A160377(n):
        r = 1
        for k in (1..n):
            if gcd(n, k) == 1: r = mod(r*k, n)
        return r
    [A160377(n) for n in (1..88)]  # Peter Luschny, Oct 20 2012

Formula

a(n) = A001783(n) mod n. - R. J. Mathar, May 21 2009
For n>2, a(n)=n-1 if A060594(n)=2; otherwise a(n)=1. - Max Alekseyev
a(n) = Gauss_factorial(n, n) modulo n. (Definition of the Gauss factorial in A216919.) - Peter Luschny, Oct 20 2012

Extensions

Edited and extended by R. J. Mathar and Max Alekseyev, May 21 2009

A216917 Square array read by antidiagonals, T(N,n) = lcm{1<=j<=N, gcd(j,n)=1 | j} for N >= 0, n >= 1.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 12, 3, 2, 1, 1, 60, 3, 2, 1, 1, 1, 60, 15, 4, 3, 2, 1, 1, 420, 15, 20, 3, 6, 1, 1, 1, 840, 105, 20, 15, 12, 1, 2, 1, 1, 2520, 105, 140, 15, 12, 1, 6, 1, 1, 1, 2520, 315, 280, 105, 12, 5, 12, 3, 2, 1, 1, 27720, 315, 280, 105, 84
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

T(N,n) is the least common multiple of all integers up to N that are relatively prime to n.
Replacing LCM in the definition with "product" gives the Gauss factorial A216919.

Examples

			   n | N=0 1 2 3  4  5  6   7   8    9   10
-----+-------------------------------------
   1 |   1 1 2 6 12 60 60 420 840 2520 2520
   2 |   1 1 1 3  3 15 15 105 105  315  315
   3 |   1 1 2 2  4 20 20 140 280  280  280
   4 |   1 1 1 3  3 15 15 105 105  315  315
   5 |   1 1 2 6 12 12 12  84 168  504  504
   6 |   1 1 1 1  1  5  5  35  35   35   35
   7 |   1 1 2 6 12 60 60  60 120  360  360
   8 |   1 1 1 3  3 15 15 105 105  315  315
   9 |   1 1 2 2  4 20 20 140 280  280  280
  10 |   1 1 1 3  3  3  3  21  21   63   63
  11 |   1 1 2 6 12 60 60 420 840 2520 2520
  12 |   1 1 1 1  1  5  5  35  35   35   35
  13 |   1 1 2 6 12 60 60 420 840 2520 2520
		

Programs

  • Mathematica
    t[, 0] = 1; t[n, k_] := LCM @@ Select[Range[k], CoprimeQ[#, n]&]; Table[t[n - k + 1, k], {n, 0, 11}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jul 29 2013 *)
  • Sage
    def A216917(N, n):
        return lcm([j for j in (1..N) if gcd(j, n) == 1])
    for n in (1..13): [A216917(N,n) for N in (0..10)]

Formula

For n > 0:
A(n,1) = A003418(n);
A(n,2^k) = A217858(n) for k > 0;
A(n,3^k) = A128501(n-1) for k > 0;
A(2,n) = A000034(n);
A(3,n) = A129203(n-1);
A(4,n) = A129197(n-1);
A(n,n) = A038610(n);
A(floor(n/2),n) = A124443(n);
A(n,1)/A(n,n) = A064446(n);
A(n,1)/A(n,2) = A053644(n).

A212307 Numerator of n!/3^n.

Original entry on oeis.org

1, 1, 2, 2, 8, 40, 80, 560, 4480, 4480, 44800, 492800, 1971200, 25625600, 358758400, 1793792000, 28700672000, 487911424000, 975822848000, 18540634112000, 370812682240000, 2595688775680000, 57105153064960000, 1313418520494080000, 10507348163952640000
Offset: 0

Views

Author

Keywords

Comments

Also the 3rd column of A152656 (or of A216919).

Crossrefs

Cf. A001316, A049606, A125824 (denominators), A152656, A216919.

Programs

  • Mathematica
    Table[Numerator[n!/3^n], {n, 0, 32}]
    (* or *) CoefficientList[Series[Exp[3x], {x, 0, 32}], x] // Denominator
  • PARI
    a(n) = numerator(n!/3^n); \\ Michel Marcus, Oct 30 2013

Formula

a(n) = Product_{i=1..n} A038502(i). - Tom Edgar, Mar 22 2014
a(n) = A000142(n)/A060828(n). - Ridouane Oudra, Sep 23 2024

A216913 a(n) = Gauss_primorial(3*n, 3) / Gauss_primorial(3*n, 3*n).

Original entry on oeis.org

1, 2, 1, 2, 5, 2, 7, 2, 1, 10, 11, 2, 13, 14, 5, 2, 17, 2, 19, 10, 7, 22, 23, 2, 5, 26, 1, 14, 29, 10, 31, 2, 11, 34, 35, 2, 37, 38, 13, 10, 41, 14, 43, 22, 5, 46, 47, 2, 7, 10, 17, 26, 53, 2, 55, 14, 19, 58, 59, 10, 61, 62, 7, 2, 65, 22, 67, 34, 23, 70, 71
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

The term Gauss primorial was introduced in A216914 and denotes the restriction of the Gauss factorial N_n! (see A216919) to prime factors.
Multiplicative because both A007947 and A109007 are. - Andrew Howroyd, Aug 02 2018

Crossrefs

Programs

  • Magma
    [&+[EulerPhi(d)*MoebiusMu(3*d)^2:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Oct 19 2019
  • Mathematica
    Table[n/Sum[Floor[Cos[Pi k^(3 n)/(3 n)]^2], {k, 3 n}], {n, 71}] (* Michael De Vlieger, May 24 2016 *)
    a[n_] := Times @@ (First /@ FactorInteger[n])/GCD[n, 3]; Array[a, 100] (* Amiram Eldar, Nov 17 2022 *)
  • PARI
    a(n)={factorback(factor(n)[, 1])/gcd(3,n)} \\ Andrew Howroyd, Aug 02 2018
    
  • Sage
    def Gauss_primorial(N, n):
        return mul(j for j in (1..N) if gcd(j, n) == 1 and is_prime(j))
    def A216913(n): return Gauss_primorial(3*n, 3)/Gauss_primorial(3*n, 3*n)
    [A216913(n) for n in (1..80)]
    

Formula

a(n) = n/Sum_{k=1..3n} floor(cos^2(Pi*k^(3n)/(3n))). - Anthony Browne, May 24 2016
a(n) = A007947(n)/A109007(n). - Andrew Howroyd, Aug 02 2018
a(n) = Sum_{d|n} phi(d)*mu(3d)^2. - Ridouane Oudra, Oct 19 2019
From Amiram Eldar, Nov 17 2022: (Start)
Multiplicative with a(3^e) = 1, and a(p^e) = p for p != 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (9/22) * Product_{p prime} (1 - 1/(p*(p+1))) = (9/22) * A065463 = 0.2881809... . (End)

A216918 Odd numbers with at least 3 distinct prime factors.

Original entry on oeis.org

105, 165, 195, 231, 255, 273, 285, 315, 345, 357, 385, 399, 429, 435, 455, 465, 483, 495, 525, 555, 561, 585, 595, 609, 615, 627, 645, 651, 663, 665, 693, 705, 715, 735, 741, 759, 765, 777, 795, 805, 819, 825, 855, 861, 885, 897, 903, 915, 935, 945, 957, 969
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

If "at least" is changed to "exactly" we get A278569. - N. J. A. Sloane, Nov 27 2016

Crossrefs

A278569 is a subsequence.

Programs

  • Maple
    a:= proc(n) option remember; local k;
          for k from 2+ `if`(n=1, 103, a(n-1)) by 2
            while nops(numtheory[factorset](k))<=2 do od; k
        end:
    seq (a(n), n=1..100);  # Alois P. Heinz, Oct 03 2012
  • Mathematica
    Select[Range[1, 999, 2], (PrimeNu[#] >= 3)&] (* Jean-François Alcover, Feb 27 2014 *)
  • Sage
    def is_A216918(n):
        if n % 2 == 0: return False
        return len(n.prime_divisors()) >= 3
    def A216918_list(n): return [k for k in srange(1, n + 1, 2) if is_A216918(k)]
    A216918_list(969)

Formula

Gauss_factorial(floor(a(n)/2), a(n)) == 1 (mod a(n)). (Cf. A216919)

A216914 The Gauss factorial N_n! restricted to prime factors for N >= 0, n >= 1, square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 6, 3, 2, 1, 1, 30, 3, 2, 1, 1, 1, 30, 15, 2, 3, 2, 1, 1, 210, 15, 10, 3, 6, 1, 1, 1, 210, 105, 10, 15, 6, 1, 2, 1, 1, 210, 105, 70, 15, 6, 1, 6, 1, 1, 1, 210, 105, 70, 105, 6, 5, 6, 3, 2, 1, 1, 2310, 105, 70, 105, 42, 5, 30, 3, 2
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

The term Gauss factorial N_n! was introduced by J. B. Cosgrave and K. Dilcher (see references in A216919). It is closely related to the Gauss-Wilson theorem which was stated in Gauss' Disquisitiones Arithmeticae (§78). Restricting the factors of the Gauss factorial to primes gives the present sequence.
Following the style of A034386 we will write N_n# for A(N,n) and call N_n# the Gauss primorial.

Examples

			[n\N][0, 1, 2, 3, 4,  5,  6,   7,   8,   9, 10]
-----------------------------------------------
[ 1]  1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210
[ 2]  1, 1, 1, 3, 3, 15, 15, 105, 105, 105, 105
[ 3]  1, 1, 2, 2, 2, 10, 10,  70,  70,  70,  70
[ 4]  1, 1, 1, 3, 3, 15, 15, 105, 105, 105, 105
[ 5]  1, 1, 2, 6, 6,  6,  6,  42,  42,  42,  42
[ 6]  1, 1, 1, 1, 1,  5,  5,  35,  35,  35,  35
[ 7]  1, 1, 2, 6, 6, 30, 30,  30,  30,  30,  30
[ 8]  1, 1, 1, 3, 3, 15, 15, 105, 105, 105, 105
[ 9]  1, 1, 2, 2, 2, 10, 10,  70,  70,  70,  70
[10]  1, 1, 1, 3, 3,  3,  3,  21,  21,  21,  21
[11]  1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210
[12]  1, 1, 1, 1, 1,  5,  5,  35,  35,  35,  35
[13]  1, 1, 2, 6, 6, 30, 30, 210, 210, 210, 210
		

Crossrefs

Cf. A034386(n) = n# = Gauss_primorial(n, 1).
The compressed version of the primorial eliminates all duplicates.
Cf. A002110(n) = compressed(Gauss_primorial(n, 1)).
Cf. A070826(n) = compressed(Gauss_primorial(n, 2)).
Cf. A007947(n) = Gauss_primorial(1*n, 1)/Gauss_primorial(1*n, 1*n).
Cf. A204455(n) = Gauss_primorial(2*n, 2)/Gauss_primorial(2*n, 2*n).
Cf. A216913(n) = Gauss_primorial(3*n, 3)/Gauss_primorial(3*n, 3*n).

Programs

  • Mathematica
    (* k stands for N *) T[n_, k_] := Product[If[GCD[j, n] == 1 && PrimeQ[j], j, 1], {j, 1, k}];
    Table[T[n - k, k], {n, 1, 12}, {k, n - 1, 0, -1}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
  • Sage
    def Gauss_primorial(N, n):
        return mul(j for j in (1..N) if gcd(j, n) == 1 and is_prime(j))
    for n in (1..13): [Gauss_primorial(N,n) for N in (1..10)]

Formula

N_n# = product_{1<=j<=N, GCD(j, n) = 1, j is prime} j.

A216915 T(n, k) = Product{1<=j<=n, gcd(j,k)=1 | j} / lcm{1<=j<=n, gcd(j,k)=1 | j} for n >= 0, k >= 1, square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 12, 1, 2, 1, 1, 1, 1, 1, 48, 1, 2, 1, 2, 1, 1, 1, 1, 144, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1440, 3, 8, 1, 12, 1, 2, 1, 1, 1, 1, 1440, 3, 8, 1, 12, 1, 2, 1, 1, 1, 1, 1, 17280, 3, 80
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

T(n,k) = Product(R(n,k))/lcm(R(n,k)) where R(n,k) is the set of all integers up to n that are relatively prime to k.
T(n,k) = A216919(n,k)/A216917(n,k).

Examples

			   k |n=0  1  2  3  4  5  6  7  8   9   10
  ---+------------------------------------
   1 |  1  1  1  1  2  2 12 12 48 144 1440
   2 |  1  1  1  1  1  1  1  1  1   3    3
   3 |  1  1  1  1  2  2  2  2  8   8   80
   4 |  1  1  1  1  1  1  1  1  1   3    3
   5 |  1  1  1  1  2  2 12 12 48 144  144
   6 |  1  1  1  1  1  1  1  1  1   1    1
   7 |  1  1  1  1  2  2 12 12 48 144 1440
   8 |  1  1  1  1  1  1  1  1  1   3    3
   9 |  1  1  1  1  2  2  2  2  8   8   80
  10 |  1  1  1  1  1  1  1  1  1   3    3
  11 |  1  1  1  1  2  2 12 12 48 144 1440
  12 |  1  1  1  1  1  1  1  1  1   1    1
  13 |  1  1  1  1  2  2 12 12 48 144 1440
		

Programs

  • Sage
    def A216915(n, k):
        def R(n, k): return [j for j in (1..n) if gcd(j, k) == 1]
        return mul(R(n,k))/lcm(R(n, k))
    for k in (1..13): [A216915(n, k) for n in (0..10)]

Formula

For n > 0:
A(n,1) = A025527(n);
A(4,n) = A000034(n);
A(n,n) = A128247(n).
Showing 1-10 of 10 results.