A160377 Phi-torial of n (A001783) modulo n.
0, 1, 2, 3, 4, 5, 6, 1, 8, 9, 10, 1, 12, 13, 1, 1, 16, 17, 18, 1, 1, 21, 22, 1, 24, 25, 26, 1, 28, 1, 30, 1, 1, 33, 1, 1, 36, 37, 1, 1, 40, 1, 42, 1, 1, 45, 46, 1, 48, 49, 1, 1, 52, 53, 1, 1, 1, 57, 58, 1, 60, 61, 1, 1, 1, 1, 66, 1, 1, 1, 70, 1, 72, 73, 1, 1, 1, 1, 78, 1, 80, 81, 82, 1, 1, 85, 1, 1
Offset: 1
Keywords
Examples
Phi-torial of 12 equals 1*5*7*11=385 which leaves a remainder of 1 when divided by 12. Phi-torial of 14 equals 1*3*5*9*11*13=19305 which leaves a remainder of 13 when divided by 14.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- John B. Cosgrave and Karl Dilcher, Extensions of the Gauss-Wilson Theorem, Integers: Electronic Journal of Combinatorial Number Theory, Vol. 8 (2008), Article #A39.
- Eric Weisstein's World of Mathematics, Wilson's Theorem.
Crossrefs
Cf. A124740 (one of just four listing "product of coprimes").
Programs
-
Maple
copr := proc(n) local a,k ; a := {1} ; for k from 2 to n-1 do if gcd(k,n) = 1 then a := a union {k} ; fi; od: a ; end: A001783 := proc(n) local c; mul(c,c= copr(n)) ; end: A160377 := proc(n) A001783(n) mod n ; end: seq( A160377(n),n=1..100) ; # R. J. Mathar, May 21 2009 A160377 := proc(n) local k, r; r := 1: for k to n do if igcd(n,k) = 1 then r := modp(r*k, n) fi od; r end: seq( A160377(i), i=1..88); # Peter Luschny, Oct 20 2012
-
Mathematica
Table[nn = n; a = Select[Range[nn], CoprimeQ[#, nn] &]; Mod[Apply[Times, a], nn], {n, 1, 88}] (* Geoffrey Critzer, Jan 03 2015 *)
-
Sage
def A160377(n): r = 1 for k in (1..n): if gcd(n, k) == 1: r = mod(r*k, n) return r [A160377(n) for n in (1..88)] # Peter Luschny, Oct 20 2012
Formula
a(n) = A001783(n) mod n. - R. J. Mathar, May 21 2009
For n>2, a(n)=n-1 if A060594(n)=2; otherwise a(n)=1. - Max Alekseyev
a(n) = Gauss_factorial(n, n) modulo n. (Definition of the Gauss factorial in A216919.) - Peter Luschny, Oct 20 2012
Extensions
Edited and extended by R. J. Mathar and Max Alekseyev, May 21 2009
Comments