cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A280820 Partial sums of A001783.

Original entry on oeis.org

1, 2, 4, 7, 31, 36, 756, 861, 3101, 3290, 3632090, 3632475, 482634075, 482653380, 483550276, 485577301, 20923275465301, 20923275550386, 6423296981278386, 6423296990008107, 6423344287544107, 6423345537481432, 1124007151123145161432, 1124007151123182343577
Offset: 1

Views

Author

Jaroslav Krizek, Jan 08 2017

Keywords

Comments

A001783(n) = the product of totatives of n.

Crossrefs

Programs

  • Magma
    [&+[&*[h: h in [1..k] | GCD(h,k) eq 1]: k in [1..n]]: n in [1..100]]
  • Mathematica
    Accumulate@ Table[Times @@ Select[Range@ n, CoprimeQ[n, #] &], {n, 24}] (* Michael De Vlieger, Jan 09 2017 *)

Formula

a(n) = Sum_{i=1..n} A001783(i).

A281027 Partial products of A066570.

Original entry on oeis.org

1, 2, 6, 48, 240, 34560, 241920, 92897280, 15049359360, 288947699712000, 3178424696832000, 3954468870810501120000, 51408095320536514560000, 232150733172291613910630400000, 338475768965201173081699123200000000, 3493719809197289292455451813740544000000000
Offset: 1

Views

Author

Jaroslav Krizek, Jan 19 2017

Keywords

Crossrefs

Cf. A066570(n) = the product of cototatives of n.

Programs

  • Magma
    [1] cat [&*[&*[h: h in [2..k] | GCD(h,k) ne 1]: k in [2..n]]: n in [2..100]];
  • Mathematica
    FoldList[Times, Table[Times @@ Select[Range[2, n], ! CoprimeQ[n, #] &], {n, 1, 16}]] (* Amiram Eldar, Aug 16 2025 *)

Formula

a(n) = Product_{i=1..n} A066570(i).
a(n) = A000178(n)/A280821(n). - Amiram Eldar, Aug 16 2025
Showing 1-2 of 2 results.