cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A216913 a(n) = Gauss_primorial(3*n, 3) / Gauss_primorial(3*n, 3*n).

Original entry on oeis.org

1, 2, 1, 2, 5, 2, 7, 2, 1, 10, 11, 2, 13, 14, 5, 2, 17, 2, 19, 10, 7, 22, 23, 2, 5, 26, 1, 14, 29, 10, 31, 2, 11, 34, 35, 2, 37, 38, 13, 10, 41, 14, 43, 22, 5, 46, 47, 2, 7, 10, 17, 26, 53, 2, 55, 14, 19, 58, 59, 10, 61, 62, 7, 2, 65, 22, 67, 34, 23, 70, 71
Offset: 1

Views

Author

Peter Luschny, Oct 02 2012

Keywords

Comments

The term Gauss primorial was introduced in A216914 and denotes the restriction of the Gauss factorial N_n! (see A216919) to prime factors.
Multiplicative because both A007947 and A109007 are. - Andrew Howroyd, Aug 02 2018

Crossrefs

Programs

  • Magma
    [&+[EulerPhi(d)*MoebiusMu(3*d)^2:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Oct 19 2019
  • Mathematica
    Table[n/Sum[Floor[Cos[Pi k^(3 n)/(3 n)]^2], {k, 3 n}], {n, 71}] (* Michael De Vlieger, May 24 2016 *)
    a[n_] := Times @@ (First /@ FactorInteger[n])/GCD[n, 3]; Array[a, 100] (* Amiram Eldar, Nov 17 2022 *)
  • PARI
    a(n)={factorback(factor(n)[, 1])/gcd(3,n)} \\ Andrew Howroyd, Aug 02 2018
    
  • Sage
    def Gauss_primorial(N, n):
        return mul(j for j in (1..N) if gcd(j, n) == 1 and is_prime(j))
    def A216913(n): return Gauss_primorial(3*n, 3)/Gauss_primorial(3*n, 3*n)
    [A216913(n) for n in (1..80)]
    

Formula

a(n) = n/Sum_{k=1..3n} floor(cos^2(Pi*k^(3n)/(3n))). - Anthony Browne, May 24 2016
a(n) = A007947(n)/A109007(n). - Andrew Howroyd, Aug 02 2018
a(n) = Sum_{d|n} phi(d)*mu(3d)^2. - Ridouane Oudra, Oct 19 2019
From Amiram Eldar, Nov 17 2022: (Start)
Multiplicative with a(3^e) = 1, and a(p^e) = p for p != 3.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (9/22) * Product_{p prime} (1 - 1/(p*(p+1))) = (9/22) * A065463 = 0.2881809... . (End)
Showing 1-1 of 1 results.