cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A341850 Array read by antidiagonals: T(n,m) is the number of maximum matchings in the rook graph K_n X K_m.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 3, 1, 1, 3, 4, 4, 3, 1, 1, 15, 16, 72, 16, 15, 1, 1, 15, 56, 132, 132, 56, 15, 1, 1, 105, 376, 7020, 2016, 7020, 376, 105, 1, 1, 105, 1912, 17280, 44928, 44928, 17280, 1912, 105, 1, 1, 945, 17984, 1920240, 1551744, 22615200, 1551744, 1920240, 17984, 945, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 21 2021

Keywords

Comments

In the case that both m and n are odd a single vertex is not covered, otherwise the maximum matchings are perfect matchings.

Examples

			Array begins:
======================================================
n\m | 0  1   2     3       4         5           6
----+-------------------------------------------------
  0 | 1  1   1     1       1         1           1 ...
  1 | 1  1   1     3       3        15          15 ...
  2 | 1  1   2     4      16        56         376 ...
  3 | 1  3   4    72     132      7020       17280 ...
  4 | 1  3  16   132    2016     44928     1551744 ...
  5 | 1 15  56  7020   44928  22615200   243319680 ...
  6 | 1 15 376 17280 1551744 243319680 61903180800 ...
  ...
		

Crossrefs

Rows n=1..4 are A133221(n+1), A081919, A341851, A341852.
Main diagonal is A289197.
Cf. A270227 (matchings), A286070, A341847 (maximal matchings).

Formula

T(n,m) = T(m,n).

A289198 Number of maximal matchings in the n X n rook graph.

Original entry on oeis.org

1, 2, 84, 22368, 84961440, 5429866337280, 7315512116927938560, 235781588994736418036121600, 207456452048917943576497565466624000, 5583211401338046269360238971594326671360000000, 5098207942457032504011606690585598401287135271321600000000
Offset: 1

Views

Author

Eric W. Weisstein, Jun 28 2017

Keywords

Crossrefs

Main diagonal of A341847.

Extensions

a(1) changed and a(5)-a(11) from Andrew Howroyd, Oct 05 2017

A341848 Number of maximal matchings in the 3 X n rook graph.

Original entry on oeis.org

1, 3, 10, 84, 852, 11580, 197640, 4314240, 100855440, 3342895920, 98070406560, 4652556511680, 163444377096000, 10568979882901440, 431650452829115520, 36599310178253222400, 1702185892636880851200, 183500657952824967955200, 9569677207227878912371200
Offset: 0

Views

Author

Andrew Howroyd, Feb 21 2021

Keywords

Crossrefs

Row n=3 of A341847.

A281433 Number of maximal matchings in the 2 X n rook graph.

Original entry on oeis.org

1, 1, 2, 10, 40, 296, 1576, 15352, 104000, 1276480, 10556416, 156843776, 1533722752, 26777626240, 302395339520, 6068829396736, 77740741758976, 1763457842941952, 25267740818452480, 639308368122204160, 10131932297407840256, 282891828731667890176
Offset: 0

Views

Author

Andrew Howroyd, Oct 05 2017

Keywords

Crossrefs

Row n=2 of A341847.
Cf. A081919 (perfect matchings), A270229, A289198.

Programs

  • Mathematica
    a[n_] := Sum[(2*k-1)!!^2 * Binomial[n, 2*k] * (1 + 2*k*(n-2*k)), {k, 0, n/2} ]; Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
  • PARI
    a(n) = sum(k=0, n\2, ((2*k)!/(2^k*k!))^2 * binomial(n,2*k) * (1 + 2*k*(n-2*k)));

Formula

a(n) = Sum_{k=0..n/2} (2*k-1)!!^2 * binomial(n,2*k) * (1 + 2*k*(n-2*k)).

A341849 Number of maximal matchings in the 4 X n rook graph.

Original entry on oeis.org

1, 3, 40, 852, 22368, 822528, 38772864, 2462728320, 189512165376, 18739021676544, 2147802505795584, 305748136551647232, 48922389407097077760, 9484975881651606847488, 2021636445616137313124352, 512419728510195503179825152, 140423343538080744846410121216
Offset: 0

Views

Author

Andrew Howroyd, Feb 21 2021

Keywords

Crossrefs

Row n=4 of A341847.
Showing 1-5 of 5 results.