cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A341847 Array read by antidiagonals: T(n,m) is the number of maximal matchings in the rook graph K_n X K_m.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 3, 1, 1, 3, 10, 10, 3, 1, 1, 15, 40, 84, 40, 15, 1, 1, 15, 296, 852, 852, 296, 15, 1, 1, 105, 1576, 11580, 22368, 11580, 1576, 105, 1, 1, 105, 15352, 197640, 822528, 822528, 197640, 15352, 105, 1, 1, 945, 104000, 4314240, 38772864, 84961440, 38772864, 4314240, 104000, 945, 1
Offset: 0

Views

Author

Andrew Howroyd, Feb 21 2021

Keywords

Examples

			Array begins:
=============================================================
n\m | 0  1    2      3        4           5             6
----+--------------------------------------------------------
  0 | 1  1    1      1        1           1             1 ...
  1 | 1  1    1      3        3          15            15 ...
  2 | 1  1    2     10       40         296          1576 ...
  3 | 1  3   10     84      852       11580        197640 ...
  4 | 1  3   40    852    22368      822528      38772864 ...
  5 | 1 15  296  11580   822528    84961440   12002446080 ...
  6 | 1 15 1576 197640 38772864 12002446080 5429866337280 ...
  ...
		

Crossrefs

Rows n=1..4 are A133221(n+1), A281433, A341848, A341849.
Main diagonal is A289198.
Cf. A270227 (matchings), A297471, A341850 (maximum matchings).

Formula

T(n,m) = T(m,n).

A341851 Number of maximum matchings in the 3 X n rook graph.

Original entry on oeis.org

1, 3, 4, 72, 132, 7020, 17280, 1920240, 6022800, 1154366640, 4421511360, 1303028052480, 5906331224640, 2481613890275520, 13003380449579520, 7385997122881977600, 43944212734316294400, 32440254625217626387200, 216088204725662645376000
Offset: 0

Views

Author

Andrew Howroyd, Feb 21 2021

Keywords

Crossrefs

Row n=3 of A341850.

Programs

  • PARI
    a(n)={my(v=vector((n+1)\2+1, i, i--; (2*i)!/(2^i*i!))); if(n%2,3,1)*sum(i=0, n\2, sum(j=0, n\2, sum(k=abs(i-j), min(i+j, n-i-j), n!/((i+k-j)!*(i+j-k)!*(n-i-j-k)!*(j+k-i)!)*v[1+(n+1)\2-i]*v[1+j]*v[1+k] )))} \\ Andrew Howroyd, Mar 14 2021

A341502 Number of matchings in the 3 X n rook graph.

Original entry on oeis.org

1, 4, 32, 370, 5950, 122984, 3175696, 98815588, 3638940860, 155377163440, 7598445388096, 420034502219864, 26014375783223272, 1788772035008337760, 135644687161742899520, 11268192704027639350384, 1020100484786824631520016, 100126060947226759050509888
Offset: 0

Views

Author

Andrew Howroyd, Feb 21 2021

Keywords

Crossrefs

Row 3 of A270227.

Programs

  • PARI
    \\ here b(n) is A000085.
    b(n)={sum(k=0, n\2, n!/((n-2*k)!*2^k*k!))}
    a(n)={my(v=vector(n+1, i, b(i-1))); sum(i=0,n, sum(j=0, n-i, sum(k=0, n-i-j, n!/(i!*j!*k!*(n-i-j-k)!)*v[1+n-i-j]*v[1+n-i-k]*v[1+n-j-k] )))}

Formula

a(n) = Sum{i,j,k>=0, i+j+k<=n} n!/(i!*j!*k!*(n-i-j-k)!) * A000085(n-i-j) * A000085(n-i-k) * A000085(n-j-k).
Showing 1-3 of 3 results.