cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A008956 Triangle of central factorial numbers |4^k t(2n+1,2n+1-2k)| read by rows (n>=0, k=0..n).

Original entry on oeis.org

1, 1, 1, 1, 10, 9, 1, 35, 259, 225, 1, 84, 1974, 12916, 11025, 1, 165, 8778, 172810, 1057221, 893025, 1, 286, 28743, 1234948, 21967231, 128816766, 108056025, 1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225, 1, 680
Offset: 0

Views

Author

Keywords

Comments

The n-th row gives the coefficients in the expansion of Product_{i=0..n-1} (x+(2i+1)^2), highest powers first (see the discussion of central factorial numbers in A008955). - N. J. A. Sloane, Feb 01 2011
Descending row polynomials in x^2 evaluated at k generate odd coefficients of e.g.f. sin(arcsin(kt)/k): 1, x^2 - 1, 9x^4 - 10x^2 + 1, 225x^6 - 259x^4 + 34x^2 - 1, ... - Ralf Stephan, Jan 16 2005
From Johannes W. Meijer, Jun 18 2009: (Start)
We define (Pi/2)*Beta(n-1/2-z/2,n-1/2+z/2)/Beta(n-1/2,n-1/2) = (Pi/2)*Gamma(n-1/2-z/2)* Gamma(n-1/2+z/2)/Gamma(n-1/2)^2 = sum(BG2[2m,n]*z^(2m), m = 0..infinity) with Beta(z,w) the Beta function. Our definition leads to BG2[2m,1] = 2*beta(2m+1) and the recurrence relation BG2[2m,n] = BG2[2m,n-1] - BG2[2m-2,n-1]/(2*n-3)^2 for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with beta(m) = sum((-1)^k/(1+2*k)^m, k=0..infinity). We observe that beta(2m+1) = 0 for m = -1, -2, -3, .. .We found for the BG2[2*m,n] = sum((-1)^(k+n)*t2(n-1,k-1)* 2*beta(2*m-2*n+2*k+1),k=1..n)/((2*n-3)!!)^2 with the central factorial numbers t2(n,m) as defined above; see also the Maple program.
From the BG2 matrix and the closely related EG2 and ZG2 matrices, see A008955, we arrive at the LG2 matrix which is defined by LG2[2m-1,1] = 2*lambda(2*m) and the recurrence relation LG2[2*m-1,n] = LG2[2*m-3,n-1]/((2*n-3)*(2*n-1)) - (2*n-3)*LG2[2*m-1,n-1]/(2*n-1) for m = -2, -1, 0, 1, 2, .. and n = 2, 3, .. , with lambda(m) = (1-2^(-m))*zeta(m) with zeta(m) the Riemann zeta function. We found for the matrix coefficients LG2[2m-1,n] = sum((-1)^(k+1)* t2(n-1,k-1)*2*lambda(2*m-2*n+2*k)/((2*n-1)!!*(2*n-3)!!), k=1..n) and we see that the central factorial numbers t2(n,m) once again play a crucial role.
(End)

Examples

			Triangle begins:
[1]
[1, 1]
[1, 10, 9]
[1, 35, 259, 225]
[1, 84, 1974, 12916, 11025]
[1, 165, 8778, 172810, 1057221, 893025]
[1, 286, 28743, 1234948, 21967231, 128816766, 108056025]
[1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225]
...
		

References

  • P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989). [From Johannes W. Meijer, Jun 18 2009]
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.

Crossrefs

Cf. A008958.
Columns include A000447, A001823. Right-hand columns include A001818, A001824, A001825. Cf. A008955.
Appears in A160480 (Beta triangle), A160487 (Lambda triangle), A160479 (ZL(n) sequence), A161736, A002197 and A002198. - Johannes W. Meijer, Jun 18 2009
Cf. A162443 (BG1 matrix) and A162448 (LG1 matrix). - Johannes W. Meijer, Jul 06 2009
Cf. A001147.

Programs

  • Haskell
    a008956 n k = a008956_tabl !! n !! k
    a008956_row n = a008956_tabl !! n
    a008956_tabl = [1] : f [1] 1 1 where
       f xs u t = ys : f ys v (t * v) where
         ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
         v = u + 2
    -- Reinhard Zumkeller, Dec 24 2013
  • Maple
    f:=n->mul(x+(2*i+1)^2,i=0..n-1);
    for n from 0 to 12 do
    t1:=eval(f(n)); t1d:=degree(t1);
    t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
    lprint(t2);
    od: # N. J. A. Sloane, Feb 01 2011
    A008956 := proc(n,k) local i ; mul( x+2*i-2*n-1,i=1..2*n) ; expand(%) ; coeftayl(%,x=0,2*(n-k)) ; abs(%) ; end: for n from 0 to 10 do for k from 0 to n do printf("%a,",A008956(n,k)) ; od: od: # R. J. Mathar, May 29 2009
    nmax:=7: for n from 0 to nmax do t2(n, 0):=1: t2(n, n):=(doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do t2(n, k) := (2*n-1)^2*t2(n-1, k-1)+t2(n-1, k) od: od: seq(seq(t2(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
  • Mathematica
    t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n-1)!!)^2; t[n_, k_] := t[n, k] = (2*n-1)^2*t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Johannes W. Meijer *)
  • PARI
    {T(n, k) = if( n<=0, k==0, (-1)^k * polcoeff( numerator( 2^(2*n -1) / sum(j=0, 2*n - 1, binomial( 2*n - 1, j) / (x + 2*n - 1 - 2*j))), 2*n - 2*k))}; /* Michael Somos, Feb 24 2003 */
    

Formula

Conjecture row sums: Sum_{k=0..n} T(n,k) = |A101927(n+1)|. - R. J. Mathar, May 29 2009
May be generated by the recurrence t2(n,k) = (2*n-1)^2*t2(n-1,k-1)+t2(n-1,k) with t2(n,0) = 1 and t2(n,n)=((2*n-1)!!)^2. - Johannes W. Meijer, Jun 18 2009

Extensions

More terms from Vladeta Jovovic, Apr 16 2000
Edited by N. J. A. Sloane, Feb 01 2011

A133221 A001147 with each term repeated.

Original entry on oeis.org

1, 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945, 10395, 10395, 135135, 135135, 2027025, 2027025, 34459425, 34459425, 654729075, 654729075, 13749310575, 13749310575, 316234143225, 316234143225, 7905853580625, 7905853580625, 213458046676875, 213458046676875
Offset: 0

Views

Author

N. J. A. Sloane, Oct 13 2007

Keywords

Comments

Normally such sequences are excluded from the OEIS, but I have made an exception for this one because so many variants of it have occurred in recent submissions.
For n>=2, a(n) = product of odd positive integers <=(n-1). - Jaroslav Krizek, Mar 21 2009
a(n) is, for n>=3, the number of way to choose floor((n-1)/2) disjoint pairs of items from n-1 items. It is then a fortiori the size of the conjugacy class of the reversal permutation [n-1,n-2,n-3,...,3,2,1]=(1 n-1)(2 n-2)(3 n-3)... in the symmetric group on n-1 elements. - Karl-Dieter Crisman, Nov 03 2009

Crossrefs

Appears in A161736. - Johannes W. Meijer, Jun 18 2009

Programs

  • Mathematica
    f[x_] := E^(x^2/2) + Sqrt[Pi/2]*Erfi[x/Sqrt[2]]; CoefficientList[ Series[f[x], {x, 0, 29}], x]*Range[0, 29]! (* Jean-François Alcover, Sep 25 2012, after Sergei N. Gladkovskii *)
    Table[(n - 1 - Mod[n, 2])!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
    Table[((2 n + (-1)^n - 3)/2)!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
  • PARI
    a(n) = my(k = (2*n + (-1)^n - 3)/2); prod(i=0, (k-1)\2, k - 2*i) \\ Iain Fox, Dec 31 2017
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    def A133221(n): return Gauss_factorial(n-1, 2)
    [A133221(n) for n in (0..29)]  # Peter Luschny, Oct 01 2012
    

Formula

E.g.f.: x*U(0) where U(k)= 1 + (2*k+1)/(x - x^4/(x^3 + (2*k+2)*(2*k+3)/U(k+1))) ; (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Sep 25 2012
G.f.: 1+x*G(0), where G(k)= 1 + x*(2*k+1)/(1 - x/(x + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 07 2013
a(n) = (2*floor(n/2)-1)!! = (n-1-(n mod 2))!!. - Alois P. Heinz, Sep 24 2024

A161737 Numerators of the column sums of the BG2 matrix.

Original entry on oeis.org

1, 2, 16, 128, 2048, 32768, 262144, 2097152, 67108864, 2147483648, 17179869184, 137438953472, 2199023255552, 35184372088832, 281474976710656, 2251799813685248, 144115188075855872, 9223372036854775808, 73786976294838206464, 590295810358705651712, 9444732965739290427392
Offset: 1

Views

Author

Johannes W. Meijer, Jun 18 2009

Keywords

Comments

For the definition of the BG2 matrix coefficients see A161736.

Examples

			sb(1) = 1; sb(2) = 2; sb(3) = 16/9; sb(4) = 128/75; sb(5) = 2048/1225; etc..
		

Crossrefs

Programs

  • Magma
    [Numerator((2^(4*n-5)*(Factorial(n-1))^4)/((n-1)*(Factorial(2*n-2))^2)): n in [2..20]]; // G. C. Greubel, Sep 26 2018
  • Maple
    nmax := 18; x(1):=0: x(2):=1: for n from 2 to nmax-1 do x(n+1) := A050605(n-2) + x(n) + 3 od: for n from 1 to nmax do a(n) := 2^x(n) od: seq(a(n), n=1..nmax); # End program 1
    nmax1 := 20; for n from 0 to nmax1 do y(2*n+1) := A090739(n); y(2*n) := A090739(n) od: z(1) := 0: z(2) := 1: for n from 3 to nmax1 do z(n) := z(n-1) + y(n-1) od: for n from 1 to nmax1 do a(n) := 2^z(n) od: seq(a(n), n=1..nmax1); # End program 2
    # Above Maple programs edited by Johannes W. Meijer, Sep 25 2012 and by Peter Luschny, Feb 13 2025
    r := n -> Pi*(2*n - 2)*((n - 3/2)!/(n - 1)!)^2: a := n -> denom(simplify(r(n))):
    seq(a(n), n = 1..20);  # Peter Luschny, Feb 12 2025
  • Mathematica
    sb[1] = 1; sb[2] = 2; sb[n_] := sb[n] = sb[n-1]*4*(n-1)*(n-2)/(2n-3)^2;
    Table[sb[n] // Numerator, {n, 2, 20}] (* Jean-François Alcover, Aug 14 2017 *)
  • PARI
    vector(20, n, n++; numerator((2^(4*n-5)*(n-1)!^4)/((n-1)*(2*n-2)!^2))) \\ G. C. Greubel, Sep 26 2018
    

Formula

a(n) = numer(sb(n)) with sb(n) = (2^(4*n-5)*(n-1)!^4)/((n-1)*(2*n-2)!^2) and A161736(n) = denom(sb(n)).
a(n) = denominator(Pi*(2*n - 2)*((n - 3/2)!/(n - 1)!)^2). - Peter Luschny, Feb 12 2025

Extensions

Offset set to 1 and a(1) = 1 prepended by Peter Luschny, Feb 13 2025

A161738 Sequence related to the column sums of the BG2 matrix.

Original entry on oeis.org

1, 1, 3, 15, 35, 315, 693, 9009, 19305, 328185, 692835, 14549535, 30421755, 760543875, 1579591125, 45808142625, 94670161425, 3124115327025, 6432002143875, 237984079323375, 488493636505875, 20028239096740875
Offset: 1

Views

Author

Johannes W. Meijer, Jun 18 2009

Keywords

Crossrefs

Programs

  • Magma
    [1] cat [(&*[2*n-2*k-3:k in [0..Floor(n/2 -1)]]): n in [2..50]]; // G. C. Greubel, Sep 26 2018
  • Mathematica
    Table[Product[(2*n - 3 - 2*k), {k, 0, Floor[n/2 - 1]}], {n, 1, 50}] (* G. C. Greubel, Sep 26 2018 *)
  • PARI
    for(n=1,50, print1(prod(k=0,floor(n/2 -1), 2*n-2*k-3), ", ")) \\ G. C. Greubel, Sep 26 2018
    

Formula

a(n) = product((2*n-3-2*k), k=0..floor(n/2-1)).
numer(a(n+2)/a(n+1)) = A005408(n) for n=>0.
denom(a(n+2)/a(n+1)) = A093178(n) for n=>0.

A278145 Denominator of partial sums of the m=1 member of an m-family of series considered by Hardy with value 4/Pi (see A088538).

Original entry on oeis.org

1, 8, 64, 1024, 16384, 131072, 1048576, 33554432, 1073741824, 8589934592, 68719476736, 1099511627776, 17592186044416, 140737488355328, 1125899906842624, 72057594037927936, 4611686018427387904, 36893488147419103232, 295147905179352825856, 4722366482869645213696
Offset: 0

Views

Author

Wolfdieter Lang, Nov 14 2016

Keywords

Comments

The numerators seems to coincide with A161736(n+2).
Hardy considered the m-family of series H(m) = 1/m + (1/(m+1))*(1/2)^2 + (1/(m+2))*(1*3/(2*4))^2 + ... = Sum_{k>=0}(1/(m+k))*(risefac(1/2,k)/k!)^2, where risefac(x,m) = Product_{j=0..m-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, p. 106, eq. (7.5.1) (with n=m).
The value of these series H(m) = (Gamma(m) / Gamma(m+1/2))^2 * Sum_{k = 0..m-1} (risefac(1/2,k)/k!)^2.
The present partial sums are for H(1) with value 1/Gamma(3/2)^2 = 4/Pi (A088538).

References

  • G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 106, eq. (7.5.1), and references on p. 112 for Darling (1), p. 232, and Watson (5), p. 235.

Crossrefs

Programs

  • Mathematica
    Table[Denominator@ Sum[(1/(k + 1)) (Pochhammer[1/2, k]/k!)^2, {k, 0, n}], {n, 0, 19}] (* or *)
    Table[Denominator@ Sum[(1/(k + 1)) (Binomial[-1/2, k])^2, {k, 0, n}], {n, 0, 19}] (* or *)
    Table[Denominator@ Sum[(1/(k + 1)) ((2 k - 1)!!/(2 k)!!)^2, {k, 0, n}], {n, 0, 19}] (* Michael De Vlieger, Nov 15 2016 *)

Formula

a(n)= denominator(r(n)) with the rationals r(n) = Sum_{k=0..n}(1/(k+1))*(risefac(1/2,k)/k!)^2 = Sum_{k=0..n} (1/(k+1))*(binomial(-1/2,k))^2 = Sum_{k=0..n}(1/(k+1))*((2*k-1)!!/(2*k)!!)^2 , with the rising factorial risefac(x,k) defined above. The double factorials are given in A001147 and A000165 with (-1)!! := 1.

A280100 a(n) = 4^(2*n) * (n!)^3 * (n+1)!.

Original entry on oeis.org

1, 32, 12288, 21233664, 108716359680, 1304596316160000, 31560794080542720000, 1385645103312147578880000, 102160842176998016695664640000, 11916040631525048667382323609600000, 2097223151148408565459288955289600000000
Offset: 0

Views

Author

Daniel Suteu, Dec 25 2016

Keywords

Crossrefs

Programs

  • PARI
    a(n) = 4^(2*n) * (n!)^3 * (n+1)!;

Formula

a(n) ~ Pi/4 * A134374(n).
a(n) ~ Pi^2 * 2^(4*n+2) / exp(4*n+1) * n^(3*n+3/2) * (n+1)^(n+3/2).
Lim_{n->infinity} a(n) / ((2n+1)!)^2 = Pi/4.
a(n) / ((2n+1)!)^2 = A278145(n) / A161736(n+2).

A380949 a(n) = numerator(r(n)) where r(n) = (n/2)*(Pi/2)^cos(Pi*(n-1))*((n/2-1/2)!/(n/2)!)^2.

Original entry on oeis.org

0, 1, 1, 4, 9, 64, 75, 256, 1225, 16384, 19845, 65536, 160083, 1048576, 1288287, 4194304, 41409225, 1073741824, 1329696225, 4294967296, 10667118605, 68719476736, 85530896451, 274877906944, 1371086188563, 17592186044416, 21972535073125, 70368744177664, 176021737014375
Offset: 0

Views

Author

Peter Luschny, Feb 11 2025

Keywords

Examples

			r(n) = 0, 1, 1/2, 4/3, 9/16, 64/45, 75/128, 256/175, 1225/2048, ...
		

Crossrefs

Cf. A380950 (denominator), A380910, A380909, A019267 (asymptotic coefficients).

Programs

  • Maple
    r := n -> (n/2)*(Pi/2)^cos(Pi*(n-1))*((n/2-1/2)!/(n/2)!)^2:
    a := n -> numer(simplify(r(n))): seq(a(n), n = 0..28);
    # Alternative:
    r := n -> ifelse(n <= 1, n, (n - 1)/(n*r(n - 1))):
  • Mathematica
    Join[{0}, Numerator[FoldList[(#2 - 1)/(#2*#) &, Range[30]]]] (* Paolo Xausa, Feb 14 2025 *)

Formula

Product_{k=1..n} a(k) = A380910(n) / A380909(n).
r(n) = (n - 1)/(n*r(n - 1)) for n > 1.
numerator(r(2*n)) = A161736(n).
numerator(r(2*n+1)) = A056982(n).
numerator(r(2*n+1))/4^n = A124399(n).
denominator(r(2*n-2)) = A161737(n).
denominator(r(2*n+1)) = A069955(n).
denominator(r(2*n+1))/(2*n+1) = A038534(n).
denominator(r(2*n+2))/2 = A278145(n).
denominator(r(2*n+2))/2^(2*n+1) = A001901(n).
r(n) ~ (2/Pi)^((-1)^n)*(1 - 1/(2*n) + 1/(8*n^2) + 1/(16*n^3) - 5/(128*n^4) - 23/(256*n^5) ...).
Showing 1-7 of 7 results.