A008956
Triangle of central factorial numbers |4^k t(2n+1,2n+1-2k)| read by rows (n>=0, k=0..n).
Original entry on oeis.org
1, 1, 1, 1, 10, 9, 1, 35, 259, 225, 1, 84, 1974, 12916, 11025, 1, 165, 8778, 172810, 1057221, 893025, 1, 286, 28743, 1234948, 21967231, 128816766, 108056025, 1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225, 1, 680
Offset: 0
Triangle begins:
[1]
[1, 1]
[1, 10, 9]
[1, 35, 259, 225]
[1, 84, 1974, 12916, 11025]
[1, 165, 8778, 172810, 1057221, 893025]
[1, 286, 28743, 1234948, 21967231, 128816766, 108056025]
[1, 455, 77077, 6092515, 230673443, 3841278805, 21878089479, 18261468225]
...
- P. L. Butzer, M. Schmidt, E. L. Stark and L. Vogt, Central Factorial Numbers: Their main properties and some applications, Numerical Functional Analysis and Optimization, 10 (5&6), 419-488 (1989). [From Johannes W. Meijer, Jun 18 2009]
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 217.
- Reinhard Zumkeller, Rows n = 0..100 of triangle, flattened
- M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972, Chapter 23, pp. 811-812. [From _Johannes W. Meijer_, Jun 18 2009]
- R. H. Boels, T. Hansen, String theory in target space, arXiv preprint arXiv:1402.6356 [hep-th], 2014.
- T. L. Curtright, D. B. Fairlie, C. K. Zachos, A compact formula for rotations as spin matrix polynomials, arXiv preprint arXiv:1402.3541 [math-ph], 2014.
- T. L. Curtright, T. S. Van Kortryk, On Rotations as Spin Matrix Polynomials, arXiv:1408.0767 [math-ph], 2014.
- M. Eastwood and H. Goldschmidt, Zero-energy fields on complex projective space, arXiv preprint arXiv:1108.1602 [math.DG], 2011.
- M. Eastwood, The X-ray transform on projective space. - From _N. J. A. Sloane_, Oct 22 2012
-
a008956 n k = a008956_tabl !! n !! k
a008956_row n = a008956_tabl !! n
a008956_tabl = [1] : f [1] 1 1 where
f xs u t = ys : f ys v (t * v) where
ys = zipWith (+) (xs ++ [t^2]) ([0] ++ map (* u^2) (init xs) ++ [0])
v = u + 2
-- Reinhard Zumkeller, Dec 24 2013
-
f:=n->mul(x+(2*i+1)^2,i=0..n-1);
for n from 0 to 12 do
t1:=eval(f(n)); t1d:=degree(t1);
t12:=y^t1d*subs(x=1/y,t1); t2:=seriestolist(series(t12,y,20));
lprint(t2);
od: # N. J. A. Sloane, Feb 01 2011
A008956 := proc(n,k) local i ; mul( x+2*i-2*n-1,i=1..2*n) ; expand(%) ; coeftayl(%,x=0,2*(n-k)) ; abs(%) ; end: for n from 0 to 10 do for k from 0 to n do printf("%a,",A008956(n,k)) ; od: od: # R. J. Mathar, May 29 2009
nmax:=7: for n from 0 to nmax do t2(n, 0):=1: t2(n, n):=(doublefactorial(2*n-1))^2 od: for n from 1 to nmax do for k from 1 to n-1 do t2(n, k) := (2*n-1)^2*t2(n-1, k-1)+t2(n-1, k) od: od: seq(seq(t2(n, k), k=0..n), n=0..nmax); # Johannes W. Meijer, Jun 18 2009, Revised Sep 16 2012
-
t[, 0] = 1; t[n, n_] := t[n, n] = ((2*n-1)!!)^2; t[n_, k_] := t[n, k] = (2*n-1)^2*t[n-1, k-1] + t[n-1, k]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 07 2014, after Johannes W. Meijer *)
-
{T(n, k) = if( n<=0, k==0, (-1)^k * polcoeff( numerator( 2^(2*n -1) / sum(j=0, 2*n - 1, binomial( 2*n - 1, j) / (x + 2*n - 1 - 2*j))), 2*n - 2*k))}; /* Michael Somos, Feb 24 2003 */
Original entry on oeis.org
1, 1, 1, 1, 3, 3, 15, 15, 105, 105, 945, 945, 10395, 10395, 135135, 135135, 2027025, 2027025, 34459425, 34459425, 654729075, 654729075, 13749310575, 13749310575, 316234143225, 316234143225, 7905853580625, 7905853580625, 213458046676875, 213458046676875
Offset: 0
-
f[x_] := E^(x^2/2) + Sqrt[Pi/2]*Erfi[x/Sqrt[2]]; CoefficientList[ Series[f[x], {x, 0, 29}], x]*Range[0, 29]! (* Jean-François Alcover, Sep 25 2012, after Sergei N. Gladkovskii *)
Table[(n - 1 - Mod[n, 2])!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
Table[((2 n + (-1)^n - 3)/2)!!, {n, 0, 20}] (* Eric W. Weisstein, Dec 31 2017 *)
-
a(n) = my(k = (2*n + (-1)^n - 3)/2); prod(i=0, (k-1)\2, k - 2*i) \\ Iain Fox, Dec 31 2017
-
def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
def A133221(n): return Gauss_factorial(n-1, 2)
[A133221(n) for n in (0..29)] # Peter Luschny, Oct 01 2012
A161737
Numerators of the column sums of the BG2 matrix.
Original entry on oeis.org
1, 2, 16, 128, 2048, 32768, 262144, 2097152, 67108864, 2147483648, 17179869184, 137438953472, 2199023255552, 35184372088832, 281474976710656, 2251799813685248, 144115188075855872, 9223372036854775808, 73786976294838206464, 590295810358705651712, 9444732965739290427392
Offset: 1
sb(1) = 1; sb(2) = 2; sb(3) = 16/9; sb(4) = 128/75; sb(5) = 2048/1225; etc..
-
[Numerator((2^(4*n-5)*(Factorial(n-1))^4)/((n-1)*(Factorial(2*n-2))^2)): n in [2..20]]; // G. C. Greubel, Sep 26 2018
-
nmax := 18; x(1):=0: x(2):=1: for n from 2 to nmax-1 do x(n+1) := A050605(n-2) + x(n) + 3 od: for n from 1 to nmax do a(n) := 2^x(n) od: seq(a(n), n=1..nmax); # End program 1
nmax1 := 20; for n from 0 to nmax1 do y(2*n+1) := A090739(n); y(2*n) := A090739(n) od: z(1) := 0: z(2) := 1: for n from 3 to nmax1 do z(n) := z(n-1) + y(n-1) od: for n from 1 to nmax1 do a(n) := 2^z(n) od: seq(a(n), n=1..nmax1); # End program 2
# Above Maple programs edited by Johannes W. Meijer, Sep 25 2012 and by Peter Luschny, Feb 13 2025
r := n -> Pi*(2*n - 2)*((n - 3/2)!/(n - 1)!)^2: a := n -> denom(simplify(r(n))):
seq(a(n), n = 1..20); # Peter Luschny, Feb 12 2025
-
sb[1] = 1; sb[2] = 2; sb[n_] := sb[n] = sb[n-1]*4*(n-1)*(n-2)/(2n-3)^2;
Table[sb[n] // Numerator, {n, 2, 20}] (* Jean-François Alcover, Aug 14 2017 *)
-
vector(20, n, n++; numerator((2^(4*n-5)*(n-1)!^4)/((n-1)*(2*n-2)!^2))) \\ G. C. Greubel, Sep 26 2018
Offset set to 1 and a(1) = 1 prepended by
Peter Luschny, Feb 13 2025
A161738
Sequence related to the column sums of the BG2 matrix.
Original entry on oeis.org
1, 1, 3, 15, 35, 315, 693, 9009, 19305, 328185, 692835, 14549535, 30421755, 760543875, 1579591125, 45808142625, 94670161425, 3124115327025, 6432002143875, 237984079323375, 488493636505875, 20028239096740875
Offset: 1
-
[1] cat [(&*[2*n-2*k-3:k in [0..Floor(n/2 -1)]]): n in [2..50]]; // G. C. Greubel, Sep 26 2018
-
Table[Product[(2*n - 3 - 2*k), {k, 0, Floor[n/2 - 1]}], {n, 1, 50}] (* G. C. Greubel, Sep 26 2018 *)
-
for(n=1,50, print1(prod(k=0,floor(n/2 -1), 2*n-2*k-3), ", ")) \\ G. C. Greubel, Sep 26 2018
A278145
Denominator of partial sums of the m=1 member of an m-family of series considered by Hardy with value 4/Pi (see A088538).
Original entry on oeis.org
1, 8, 64, 1024, 16384, 131072, 1048576, 33554432, 1073741824, 8589934592, 68719476736, 1099511627776, 17592186044416, 140737488355328, 1125899906842624, 72057594037927936, 4611686018427387904, 36893488147419103232, 295147905179352825856, 4722366482869645213696
Offset: 0
- G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, p. 106, eq. (7.5.1), and references on p. 112 for Darling (1), p. 232, and Watson (5), p. 235.
-
Table[Denominator@ Sum[(1/(k + 1)) (Pochhammer[1/2, k]/k!)^2, {k, 0, n}], {n, 0, 19}] (* or *)
Table[Denominator@ Sum[(1/(k + 1)) (Binomial[-1/2, k])^2, {k, 0, n}], {n, 0, 19}] (* or *)
Table[Denominator@ Sum[(1/(k + 1)) ((2 k - 1)!!/(2 k)!!)^2, {k, 0, n}], {n, 0, 19}] (* Michael De Vlieger, Nov 15 2016 *)
A280100
a(n) = 4^(2*n) * (n!)^3 * (n+1)!.
Original entry on oeis.org
1, 32, 12288, 21233664, 108716359680, 1304596316160000, 31560794080542720000, 1385645103312147578880000, 102160842176998016695664640000, 11916040631525048667382323609600000, 2097223151148408565459288955289600000000
Offset: 0
A380949
a(n) = numerator(r(n)) where r(n) = (n/2)*(Pi/2)^cos(Pi*(n-1))*((n/2-1/2)!/(n/2)!)^2.
Original entry on oeis.org
0, 1, 1, 4, 9, 64, 75, 256, 1225, 16384, 19845, 65536, 160083, 1048576, 1288287, 4194304, 41409225, 1073741824, 1329696225, 4294967296, 10667118605, 68719476736, 85530896451, 274877906944, 1371086188563, 17592186044416, 21972535073125, 70368744177664, 176021737014375
Offset: 0
r(n) = 0, 1, 1/2, 4/3, 9/16, 64/45, 75/128, 256/175, 1225/2048, ...
-
r := n -> (n/2)*(Pi/2)^cos(Pi*(n-1))*((n/2-1/2)!/(n/2)!)^2:
a := n -> numer(simplify(r(n))): seq(a(n), n = 0..28);
# Alternative:
r := n -> ifelse(n <= 1, n, (n - 1)/(n*r(n - 1))):
-
Join[{0}, Numerator[FoldList[(#2 - 1)/(#2*#) &, Range[30]]]] (* Paolo Xausa, Feb 14 2025 *)
Showing 1-7 of 7 results.
Comments