cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A216919 The Gauss factorial N_n! for N >= 0, n >= 1, square array read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 6, 1, 1, 1, 24, 3, 2, 1, 1, 120, 3, 2, 1, 1, 1, 720, 15, 8, 3, 2, 1, 1, 5040, 15, 40, 3, 6, 1, 1, 1, 40320, 105, 40, 15, 24, 1, 2, 1, 1, 362880, 105, 280, 15, 24, 1, 6, 1, 1, 1, 3628800, 945, 2240, 105, 144, 5, 24, 3, 2, 1, 1, 39916800, 945
Offset: 1

Views

Author

Peter Luschny, Oct 01 2012

Keywords

Comments

The term is due to Cosgrave & Dilcher. The Gauss factorial should not be confused with the q-factorial [n]_q! which is also called Gaussian factorial.

Examples

			[n\N][0, 1, 2, 3,  4,   5,   6,    7,     8,      9,     10]
------------------------------------------------------------
[  1] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A000142]
[  2] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945 [A055634, A133221]
[  3] 1, 1, 2, 2,  8,  40,  40,  280,  2240,   2240,   22400 [A232980]
[  4] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945
[  5] 1, 1, 2, 6, 24,  24, 144, 1008,  8064,  72576,   72576 [A232981]
[  6] 1, 1, 1, 1,  1,   5,   5,   35,    35,     35,      35 [A232982]
[  7] 1, 1, 2, 6, 24, 120, 720,  720,  5760,  51840,  518400 [A232983]
[  8] 1, 1, 1, 3,  3,  15,  15,  105,   105,    945,     945
[  9] 1, 1, 2, 2,  8,  40,  40,  280,  2240,   2240,   22400
[ 10] 1, 1, 1, 3,  3,   3,   3,   21,    21,    189,     189 [A232984]
[ 11] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800 [A232985]
[ 12] 1, 1, 1, 1,  1,   5,   5,   35,    35,     35,      35
[ 13] 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800
		

Crossrefs

A000142(n) = n! = Gauss_factorial(n, 1).
A001147(n) = Gauss_factorial(2*n, 2).
A055634(n) = Gauss_factorial(n, 2)*(-1)^n.
A001783(n) = Gauss_factorial(n, n).
A124441(n) = Gauss_factorial(floor(n/2), n).
A124442(n) = Gauss_factorial(n, n)/Gauss_factorial(floor(n/2), n).
A066570(n) = Gauss_factorial(n, 1)/Gauss_factorial(n, n).

Programs

  • Maple
    A:= (n, N)-> mul(`if`(igcd(j, n)=1, j, 1), j=1..N):
    seq(seq(A(n, d-n), n=1..d), d=1..12);  # Alois P. Heinz, Oct 03 2012
  • Mathematica
    GaussFactorial[m_, n_] := Product[ If[ GCD[j, n] == 1, j, 1], {j, 1, m}]; Table[ GaussFactorial[m - n, n], {m, 1, 12}, {n, 1, m}] // Flatten (* Jean-François Alcover, Mar 18 2013 *)
  • PARI
    T(m,n)=prod(k=2, m, if(gcd(k,n)==1, k, 1))
    for(s=1,10,for(n=1,s,print1(T(s-n,n)", "))) \\ Charles R Greathouse IV, Oct 01 2012
  • Sage
    def Gauss_factorial(N, n): return mul(j for j in (1..N) if gcd(j, n) == 1)
    for n in (1..13): [Gauss_factorial(N, n) for N in (0..10)]
    

Formula

N_n! = product_{1<=j<=N, GCD(j,n)=1} j.

A232985 The Gauss factorial n_11!.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 3628800, 43545600, 566092800, 7925299200, 118879488000, 1902071808000, 32335220736000, 582033973248000, 11058645491712000, 221172909834240000, 4644631106519040000, 4644631106519040000, 106826515449937920000, 2563836370798510080000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=11; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(11);

A232981 The Gauss factorial n_5!.

Original entry on oeis.org

1, 1, 2, 6, 24, 24, 144, 1008, 8064, 72576, 72576, 798336, 9580032, 124540416, 1743565824, 1743565824, 27897053184, 474249904128, 8536498274304, 162193467211776, 162193467211776, 3406062811447296, 74933381851840512, 1723467782592331776, 41363226782215962624, 41363226782215962624
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=5; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(5);
  • Mathematica
    Table[n!/(5^#*#!) &@ Floor[n/5], {n, 0, 25}] (* Michael De Vlieger, Mar 06 2017 *)

Formula

From Robert Israel, Mar 06 2017: (Start)
a(n) = a(n-1) if 5 | n; otherwise n*a(n-1).
a(n) = n!/(5^floor(n/5)*floor(n/5)!). (End)

A232982 The Gauss factorial n_6!.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 5, 35, 35, 35, 35, 385, 385, 5005, 5005, 5005, 5005, 85085, 85085, 1616615, 1616615, 1616615, 1616615, 37182145, 37182145, 929553625, 929553625, 929553625, 929553625, 26957055125, 26957055125, 835668708875, 835668708875, 835668708875, 835668708875, 29248404810625, 29248404810625
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=6; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..40]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(6);

A232983 The Gauss factorial n_7!.

Original entry on oeis.org

1, 1, 2, 6, 24, 120, 720, 720, 5760, 51840, 518400, 5702400, 68428800, 889574400, 889574400, 13343616000, 213497856000, 3629463552000, 65330343936000, 1241276534784000, 24825530695680000, 24825530695680000, 546161675304960000, 12561718532014080000, 301481244768337920000, 7537031119208448000000
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=7; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..30]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(7);

A232984 The Gauss factorial n_10!.

Original entry on oeis.org

1, 1, 1, 3, 3, 3, 3, 21, 21, 189, 189, 2079, 2079, 27027, 27027, 27027, 27027, 459459, 459459, 8729721, 8729721, 183324141, 183324141, 4216455243, 4216455243, 4216455243, 4216455243, 113844291561, 113844291561, 3301484455269, 3301484455269, 102346018113339, 102346018113339, 3377418597740187
Offset: 0

Views

Author

N. J. A. Sloane, Dec 08 2013

Keywords

Comments

The Gauss factorial n_k! is defined to be Product_{1<=j<=n, gcd(j,k)=1} j.

Crossrefs

The Gauss factorials n_1!, n_2!, n_3!, n_5!, n_6!, n_7!, n_10!, n_11! are A000142, A055634, A232980-A232985 respectively.

Programs

  • Magma
    k:=10; [IsZero(n) select 1 else &*[j: j in [1..n] | IsOne(GCD(j,k))]: n in [0..40]]; // Bruno Berselli, Dec 10 2013
  • Maple
    Gf:=proc(N,n) local j,k; k:=1;
    for j from 1 to N do if gcd(j,n)=1 then k:=j*k; fi; od; k; end;
    f:=n->[seq(Gf(N,n),N=0..40)];
    f(10);
Showing 1-6 of 6 results.