A132188 Number of 3-term geometric progressions with no term exceeding n.
1, 2, 3, 6, 7, 8, 9, 12, 17, 18, 19, 22, 23, 24, 25, 32, 33, 38, 39, 42, 43, 44, 45, 48, 57, 58, 63, 66, 67, 68, 69, 76, 77, 78, 79, 90, 91, 92, 93, 96, 97, 98, 99, 102, 107, 108, 109, 116, 129, 138, 139, 142, 143, 148, 149, 152, 153, 154, 155, 158
Offset: 1
Keywords
Examples
a(4) counts these six (w,x,y) - triples: (1,1,1), (2,1,4), (2,4,1), (2,2,2), (3,3,3), (4,4,4). - _Clark Kimberling_, Apr 14 2012
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Gerry Myerson, Trifectas in Geometric Progression, Australian Mathematical Society Gazette 35 (3) (2008) pp. 189--194 (pages 47--52 in PDF).
Crossrefs
Programs
-
Haskell
a132188 0 = 0 a132188 n = a132345 n + (a120486 $ fromInteger n) -- Reinhard Zumkeller, Apr 21 2012
-
Maple
a:= proc(n) option remember; `if`(n=0, 0, a(n-1)+ 1+2*add(`if`(issqr(i*n), 1, 0), i=1..n-1)) end: seq(a(n), n=1..60); # Alois P. Heinz, Aug 28 2023
-
Mathematica
t[n_] := t[n] = Flatten[Table[w^2 - x*y, {w, 1, n}, {x, 1, n}, {y, 1, n}]] c[n_] := Count[t[n], 0] t = Table[c[n], {n, 0, 80}] (* Clark Kimberling, Apr 14 2012 *)
-
Python
from sympy.ntheory.primetest import is_square def A132188(n): return n+(sum(1 for x in range(1,n+1) for y in range(1,x) if is_square(x*y))<<1) # Chai Wah Wu, Aug 28 2023
Formula
a(n) = Sum [sqrt(n/k)]^2, where the sum is over all squarefree k not exceeding n.
If we call A120486, this sequence and A132189 F(n), P(n) and S(n), respectively, then P(n) = 2 F(n) - n = S(n) + n. The Finch-Sebah paper cited at A000188 proves that F(n) is asymptotic to (3 / pi^2) n log n. In the reference, we prove that F(n) = (3 / pi^2) n log n + O(n), from which it follows that P(n) = (6 / pi^2) n log n + O(n) and similarly for S(n).
a(n) = Sum_{1 <=x,y <=n} A010052(x*y). - Clark Kimberling, Apr 14 2012
a(n) = n+2*Sum_{1<=xA010052(x*y). - Chai Wah Wu, Aug 28 2023
Comments