A005635
Number of ways of placing n non-attacking bishops on an n X n board so that every square is attacked (or occupied).
Original entry on oeis.org
1, 1, 1, 1, 3, 8, 36, 110, 666, 3250, 23436, 125198, 1037520, 7241272, 66360960, 500827928, 5080370400, 45926666984, 508032504000, 4919789029480, 59256857923200, 656763542278304, 8532986822438400, 100525959568386848, 1405335514253932800, 18431883489984091552
Offset: 0
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- N. J. A. Sloane, Table of n, a(n) for n = 0..250
- Jean-François Alcover, Mathematica program.
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976).
- R. W. Robinson, Counting arrangements of bishops, pp. 198-214 of Combinatorial Mathematics IV (Adelaide 1975), Lect. Notes Math., 560 (1976). (Annotated scanned copy)
-
E:=proc(n) local k; if n mod 2 = 0 then k := n/2; if k mod 2 = 0 then RETURN( (k!*(k+2)/2)^2 ); else RETURN( ((k-1)!*(k+1)^2/2)^2 ); fi; else k := (n-1)/2; if k mod 2 = 0 then RETURN( ((k!)^2/12)*(3*k^3+16*k^2+18*k+8) ); else RETURN( ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3) ); fi; fi; end; # Gives A122749
unprotect(D); D:=proc(n) option remember; if n <= 1 then 1 else D(n-1)+(n-1)*D(n-2); fi; end; # Gives A000085
C:=proc(n) local k; if n mod 2 = 0 then RETURN(0); fi; k:=(n-1)/2; if k mod 2 = 0 then RETURN( k*2^(k-1)*((k/2)!)^2 ); else RETURN( 2^k*(((k+1)/2)!)^2 ); fi; end; # Gives A122693
Q:=proc(n) local m; if n mod 8 <> 1 then RETURN(0); fi; m:=(n-1)/8; ((2*m)!)^2/(m!)^2; end; # Gives A122747
M:=proc(n) local k; if n mod 2 = 0 then k:=n/2; if k mod 2 = 0 then RETURN( k!*(k+2)/2 ); else RETURN( (k-1)!*(k+1)^2/2 ); fi; else k:=(n-1)/2; RETURN(D(k)*D(k+1)); fi; end; # Gives A122748
a:=n-> if n <= 1 then RETURN(1) else E(n)/8 + C(n)/8 + Q(n)/4 + M(n)/4; fi; # Gives A005635
# The following additional Maple programs produce A123071, A005631, A123072, A005633, A005632, A005634
S:=proc(n) local k; if n mod 2 = 0 then RETURN(0) else k:=(n-1)/2; RETURN(B(k)*B(k+1)); fi; end; # Gives A123071
psi:=n->S(n)/2; # Gives A005631
zeta:=n->Q(n)/2; # Gives A123072
mu:=n->(M(n)-S(n))/2; # Gives A005633
chi:=n->(C(n)-S(n)-Q(n))/4; # Gives A005632
eps:=n->E(n)/8-C(n)/8+S(n)/4-M(n)/4; # Gives A005634
A122749
Number of arrangements of n non-attacking bishops on an n X n board such that every square of the board is controlled by at least one bishop.
Original entry on oeis.org
4, 2, 16, 44, 256, 768, 5184, 25344, 186624, 996480, 8294400, 57888000, 530841600, 4006195200, 40642560000, 367408742400, 4064256000000, 39358255104000, 474054819840000, 5254107586560000, 68263894056960000, 804207665479680000, 11242684107325440000
Offset: 2
-
E:=proc(n) local k; if n mod 2 = 0 then k := n/2; if k mod 2 = 0 then RETURN( (k!*(k+2)/2)^2 ); else RETURN( ((k-1)!*(k+1)^2/2)^2 ); fi; else k := (n-1)/2; if k mod 2 = 0 then RETURN( ((k!)^2/12)*(3*k^3+16*k^2+18*k+8) ); else RETURN( ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3) ); fi; fi; end;
-
Table[If[n==1,1,1/768*(2*(3*n^3+23*n^2+17*n+21)*(((n-1)/2)!)^2*(1-(-1)^n+2*Sin[(Pi*n)/2])-2*(3*n^3+17*n^2-47*n+3)*((n-3)/2)!*((n+1)/2)!*((-1)^n+2*Sin[(Pi*n)/2]-1)+3*(n+2)^4*((n/2-1)!)^2*((-1)^n-2*Cos[(Pi*n)/2]+1)+12*(n+4)^2*((n/2)!)^2*((-1)^n+2*Cos[(Pi*n)/2]+1))],{n,2,25}] (* Vaclav Kotesovec, Apr 26 2012 *)
a[n_] := Module[{k}, If[Mod[n, 2]==0, k = n/2; If[Mod[k, 2]==0, (k!*(k+2) /2)^2, ((k-1)!*(k+1)^2/2)^2], k = (n-1)/2; If[Mod[k, 2]==0, ((k!)^2/12)* (3*k^3+16*k^2+18*k+8), ((k-1)!*(k+1)!/12)*(3*k^3+13*k^2-k-3)]]];
Table[a[n], {n, 2, 25}] (* Jean-François Alcover, Jul 23 2022, after Maple code *)
A002564
Number of different ways one can attack all squares on an n X n chessboard using the minimum number of queens.
Original entry on oeis.org
1, 4, 1, 12, 186, 4, 86, 4860, 114, 8, 2, 8, 288, 4632, 205832, 2968, 124, 16, 84
Offset: 1
- W. Ahrens, Mathematische Unterhaltungen und Spiele, second edition (1910), Vol. 1, p. 301.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Andy Huchala, Python program.
- Matthew D. Kearse and Peter B. Gibbons, Computational Methods and New Results for Chessboard Problems, Australasian Journal of Combinatorics 23 (2001), 253-284.
- Mia Müßig, Julia code to compute the sequence
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49.
- M. A. Sainte-Laguë, Les Réseaux (ou Graphes), Mémorial des Sciences Mathématiques, Fasc. 18, Gauthier-Villars, Paris, 1923, 64 pages. See p. 49. [Incomplete annotated scan of title page and pages 18-51]
- Eric Weisstein's World of Mathematics, Minimal Edge Cover.
- Eric Weisstein's World of Mathematics, Minimum Dominating Set.
- Eric Weisstein's World of Mathematics, Queen Graph.
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 1 to 7
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 8
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 9 to 13
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 14
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 16
- Eric W. Weisstein, Symmetrically inequivalent configurations for n = 17 to 19
A323500
Number of minimum dominating sets in the n X n black bishop graph.
Original entry on oeis.org
1, 2, 1, 5, 52, 22, 6, 108, 2964, 672, 120, 4680, 245520, 38160, 5040, 342720, 29292480, 3467520, 362880, 38102400, 4819046400, 460857600, 39916800, 5987520000, 1050690009600, 84304281600, 6227020800, 1264085222400, 293878019635200, 20312541849600
Offset: 1
-
Table[Piecewise[{{1, n == 1}, {(n/2)! (n + 1)/2, Mod[n, 4] == 0}, {((n - 1)/2)! (n^3 + 3 n^2 + 2 n - 2)/8, Mod[n, 4] == 1}, {(n/2 - 1)! (n^2 + n + 2)/4, Mod[n, 4] == 2}, {((n - 1)/2)!, Mod[n, 4] == 3}}], {n, 20}] (* Eric W. Weisstein, Feb 27 2025 *)
-
\\ See A286886 for DomSetCount, Bishop.
a(n)={Vec(DomSetCount(Bishop(n, 0), x + O(x^((n+3)\2))))[1]} \\ Andrew Howroyd, Sep 08 2019
-
a(n)=if(n==1, 1, (n\4*2)!*if(n%4<2, if(n%2==0, (n+1)/2, (n^3 + 3*n^2 + 2*n - 2)/8), if(n%2==0, (n^2+n+2)/4, (n-1)/2))); \\ Andrew Howroyd, Sep 09 2019
A323501
Number of minimum dominating sets in the n X n white bishop graph.
Original entry on oeis.org
2, 6, 5, 2, 22, 356, 108, 24, 672, 25056, 4680, 720, 38160, 2531520, 342720, 40320, 3467520, 358444800, 38102400, 3628800, 460857600, 68388364800, 5987520000, 479001600, 84304281600, 16979648716800, 1264085222400, 87178291200, 20312541849600
Offset: 2
-
Table[Piecewise[{{(n/2)! (n + 1)/2, Mod[n, 4] == 0}, {((n - 1)/2)!, Mod[n, 4] == 1}, {(n/2 - 1)! (n^2 + n + 2)/4, Mod[n, 4] == 2}, {((n - 3)/2)! (n + 1) (n^3 + n^2 - 6 n + 6)/16, Mod[n, 4] == 3}}], {n, 2, 20}] (* Eric W. Weisstein, Feb 27 2025 *)
-
\\ See A289170 for DomSetCount, Bishop.
a(n)={Vec(DomSetCount(Bishop(n, 1), x + O(x^((n+3)\2))))[1]} \\ Andrew Howroyd, Sep 08 2019
-
a(n)=(n\4*2)!*if(n%4<2, if(n%2==0, (n + 1)/2, 1), if(n%2==0, (n^2 + n + 2)/4, (n + 1)*(n^3 + n^2 - 6*n + 6)/16)); \\ Andrew Howroyd, Sep 09 2019
Offset corrected and terms a(11) and beyond from
Andrew Howroyd, Sep 08 2019
A295899
Number of minimal dominating sets in the n X n bishop graph.
Original entry on oeis.org
1, 4, 30, 361, 6552, 180625, 6768900, 330039889, 20267217352, 1535068962441
Offset: 1
Showing 1-6 of 6 results.
Comments