cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A182333 Number of arrangements of n bishops such that every square of the board is controlled by at least one bishop.

Original entry on oeis.org

1, 4, 6, 25, 104, 484, 2136, 11664, 71136, 451584, 3006720, 21902400, 176774400, 1456185600, 12758860800, 117456998400, 1181072793600, 12023694950400, 130072449024000, 1451792885760000, 17487355576320000, 212389727477760000, 2729844680048640000
Offset: 1

Views

Author

Vaclav Kotesovec, Apr 25 2012

Keywords

Comments

Number of minimum dominating sets in the n X n bishop graph. - Eric W. Weisstein, Jun 04 2017

References

  • A. M. Yaglom and I. M. Yaglom, Challenging Mathematical Problems with Elementary Solutions, vol.1, 1987, p.11 and p.83-88.

Crossrefs

Programs

  • Mathematica
    Table[If[n==1,1,((2*Floor[n/4])!)^2/128*(n^5+3*n^4+n^3+35*n^2+38*n+2-(n^5-n^4-7*n^3-n^2-10*n-30)*(-1)^n-4*(n^3+2*n^2+n-4)*n*Cos[Pi*n/2]-2*(n^5+n^4-11*n^3-7*n^2-2*n+2)*Sin[Pi*n/2])],{n,1,25}]
  • PARI
    a(n)={if(n==1, 1, (n\4*2)!^2*if(n%4<2, if(n%2==0, (n+1)^2, (n^3 + 3*n^2 + 2*n - 2)/2), if(n%2==0, (n^2+n+2)^2/4, (n+1)*(n-1)*(n^3 + n^2 - 6*n + 6)/8))/4)} \\ Andrew Howroyd, Sep 09 2019

Formula

a(n) = (((2*floor(n/4))!)^2/128)*(n^5 + 3*n^4 + n^3 + 35*n^2 + 38*n + 2 - (n^5 - n^4 - 7*n^3 - n^2 - 10*n - 30)*(-1)^n -4*(n^3 + 2*n^2 + n - 4)*n*cos(Pi*n/2) - 2*(n^5 + n^4 - 11*n^3 - 7*n^2 - 2*n + 2)*sin(Pi*n/2)), for n > 1.
a(n) = A323500(n) * A323501(n) for n > 1. - Andrew Howroyd, Sep 08 2019

A323500 Number of minimum dominating sets in the n X n black bishop graph.

Original entry on oeis.org

1, 2, 1, 5, 52, 22, 6, 108, 2964, 672, 120, 4680, 245520, 38160, 5040, 342720, 29292480, 3467520, 362880, 38102400, 4819046400, 460857600, 39916800, 5987520000, 1050690009600, 84304281600, 6227020800, 1264085222400, 293878019635200, 20312541849600
Offset: 1

Views

Author

Eric W. Weisstein, Jan 16 2019

Keywords

Crossrefs

Cf. A182333 (bishop graph), A323501 (white bishop graph).

Programs

  • Mathematica
    Table[Piecewise[{{1, n == 1}, {(n/2)! (n + 1)/2, Mod[n, 4] == 0}, {((n - 1)/2)! (n^3 + 3 n^2 + 2 n - 2)/8, Mod[n, 4] == 1}, {(n/2 - 1)! (n^2 + n + 2)/4, Mod[n, 4] == 2}, {((n - 1)/2)!, Mod[n, 4] == 3}}], {n, 20}] (* Eric W. Weisstein, Feb 27 2025 *)
  • PARI
    \\ See A286886 for DomSetCount, Bishop.
    a(n)={Vec(DomSetCount(Bishop(n, 0), x + O(x^((n+3)\2))))[1]} \\ Andrew Howroyd, Sep 08 2019
    
  • PARI
    a(n)=if(n==1, 1, (n\4*2)!*if(n%4<2, if(n%2==0, (n+1)/2, (n^3 + 3*n^2 + 2*n - 2)/8), if(n%2==0, (n^2+n+2)/4, (n-1)/2))); \\ Andrew Howroyd, Sep 09 2019

Formula

From Andrew Howroyd, Sep 09 2019: (Start)
a(n) = (n/2)! * (n + 1)/2 for n mod 4 = 0;
a(n) = ((n-1)/2)! * (n^3 + 3*n^2 + 2*n - 2)/8 for n mod 4 = 1, n > 1;
a(n) = (n/2-1)! * (n^2 + n + 2)/4 for n mod 4 = 2;
a(n) = ((n-1)/2)! for n mod 4 = 3.
(End)

Extensions

Terms a(11) and beyond from Andrew Howroyd, Sep 08 2019

A381727 Number of minimum connected dominating sets in the n X n white bishop graph.

Original entry on oeis.org

2, 4, 1, 4, 13, 64, 513, 4480, 41197, 444416, 5597201, 77253632, 1153902701, 18870222848, 336018968449, 6428081455104, 131386321421901, 2865273888571392, 66426533670738769, 1629643279560867840, 42175861619149917325, 1148845693539400548352, 32856688248674995989889
Offset: 2

Views

Author

Eric W. Weisstein, Mar 05 2025

Keywords

Crossrefs

Cf. A381726 (black bishop).

Programs

  • Mathematica
    Join[{2, 4}, Table[Sum[(2 k)^(n - 2 k - 2) (n - 2 k - 1)^(2 k - 1), {k, Floor[n/2] - 1}], {n, 4, 20}]] (* Eric W. Weisstein, Mar 22 2025 *)
  • PARI
    \\ B(n, k) is A072590.
    B(n,k) = n^(k-1) * k^(n-1)
    a(n) = if(n <= 3, 2*n-2, sum(k=1, n\2-1, B(n-1-2*k, 2*k))) \\ Andrew Howroyd, Mar 20 2025

Formula

a(n) = Sum_{k=1..floor(n\2)-1} A072590(n-1-2*k, 2*k) for n >= 4. - Andrew Howroyd, Mar 20 2025

Extensions

a(10) onwards from Andrew Howroyd, Mar 20 2025
Showing 1-3 of 3 results.