A005670 Mrs. Perkins's quilt: smallest coprime dissection of n X n square.
1, 4, 6, 7, 8, 9, 9, 10, 10, 11, 11, 11, 11, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17
Offset: 1
Examples
Illustrating a(7) = 9: a dissection of a 7 X 7 square into 9 pieces, courtesy of _Ed Pegg Jr_: .___.___.___.___.___.___.___ |...........|.......|.......| |...........|.......|.......| |...........|.......|.......| |...........|___.___|___.___| |...........|...|...|.......| |___.___.___|___|___|.......| |...............|...|.......| |...............|___|___.___| |...............|...........| |...............|...........| |...............|...........| |...............|...........| |...............|...........| |___.___.___.___|___.___.___| The Duijvestijn code for this is {{3,2,2},{1,1,2},{4,1},{3}} Solutions for n = 1..10: 1 {{1}} 2 {{1, 1}, {1, 1}} 3 {{2, 1}, {1}, {1, 1, 1}} 4 {{2, 2}, {2, 1, 1}, {1, 1}} 5 {{3, 2}, {1, 1}, {2, 1, 2}, {1}} 6 {{3, 3}, {3, 2, 1}, {1}, {1, 1, 1}} 7 {{4, 3}, {1, 2}, {3, 1, 1}, {2, 2}} 8 {{4, 4}, {4, 2, 2}, {2, 1, 1}, {1, 1}} 9 {{5, 4}, {1, 1, 2}, {4, 2, 1}, {3}, {2}} 10 {{5, 5}, {5, 3, 2}, {1, 1}, {2, 1, 2}, {1}}
References
- H. T. Croft, K. J. Falconer and R. K. Guy, Unsolved Problems in Geometry, C3.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Ed Wynn, Table of n, a(n) for n = 1..120
- J. H. Conway, Mrs. Perkins's quilt, Proc. Camb. Phil. Soc., 60 (1964), 363-368.
- A. J. W. Duijvestijn, Table I
- A. J. W. Duijvestijn, Table II
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Ed Pegg, Jr., Mrs Perkins's Quilts (best known values to 40000)
- G. B. Trustrum, Mrs Perkins's quilt, Proc. Cambridge Philos. Soc., 61 1965 7-11.
- Eric Weisstein's World of Mathematics, Mrs. Perkins's Quilt
- Ed Wynn, Exhaustive generation of 'Mrs Perkins's quilt' square dissections for low orders, arXiv:1308.5420 [math.CO], 2013-2014.
- Ed Wynn, Exhaustive generation of 'Mrs. Perkins's quilt' square dissections for low orders, Discrete Math. 334 (2014), 38--47. MR3240464
Extensions
b-file from Wynn 2013, added by N. J. A. Sloane, Nov 29 2013
Comments