cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005682 Number of Twopins positions.

Original entry on oeis.org

1, 2, 4, 8, 15, 28, 51, 92, 165, 294, 522, 924, 1632, 2878, 5069, 8920, 15686, 27570, 48439, 85080, 149405, 262320, 460515, 808380, 1418916, 2490432, 4370944, 7671188, 13462945, 23627078, 41464296, 72766972, 127700055, 224101844, 393276447, 690158844, 1211153337
Offset: 5

Views

Author

Keywords

References

  • R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A005682:=1/((z**3-z**2+2*z-1)*(z**3+z**2-1)); # conjectured (correctly) by Simon Plouffe in his 1992 dissertation for offset 0
  • Mathematica
    CoefficientList[ Series[x^5/((x^3 + x^2 - 1)(x^3 - x^2 + 2 x - 1)), {x, 0, 41}], x] (* or *)
    a[n_] := a[n] = 2 a[n - 1] - a[n - 4] - a[n - 6]; a[0] = a[1] = a[2] = a[3] = a[4] = 0; a[5] = 1; Array[a, 42, 0] (* or *)
    LinearRecurrence[{2, 0, 0, -1, 0, -1}, {0, 0, 0, 0, 0, 1}, 38] (* Robert G. Wilson v, Jun 22 2014 *)

Formula

a(n) = 2a(n-1) - a(n-4) - a(n-6). - John W. Layman
G.f.: x^5/((x^3+x^2-1)*(x^3-x^2+2*x-1)). - Ralf Stephan, Apr 22 2004
a(n) = (A005251(n+1)-A000931(n+5))/2. - R. J. Mathar, Dec 10 2011

Extensions

More terms from David W. Wilson