cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005685 Number of Twopins positions.

Original entry on oeis.org

1, 2, 3, 5, 7, 11, 16, 26, 40, 65, 101, 163, 257, 416, 663, 1073, 1719, 2781, 4472, 7236, 11664, 18873, 30465, 49293, 79641, 128862, 208315, 337061, 545071, 881943, 1426520, 2308158, 3733880, 6041545, 9774133
Offset: 4

Views

Author

Keywords

Comments

The complete sequence by R. K. Guy in "Anyone for Twopins?" starts with a(0) = 0, a(1) = 1, a(2) = 1 and a(3) = 1. The formula for a(n) confirms these values. - Johannes W. Meijer, Aug 24 2013

References

  • R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Maple
    A005685 := -(-1-z**3+2*z**4+z**2+z**5+z**6+z**7)/(z**2-z+1)/(z**2+z-1)/(z**4+z**2-1);
  • PARI
    a(n)=(2*fibonacci(floor((n+1)/2))+fibonacci(n)+[0,1,1,0,-1,-1][(n%6)+1])/4; /* Ralf Stephan, Aug 25 2013 */

Formula

G.f.: (-x^4*(x^7+x^6+x^5+2*x^4-x^3+x^2-1))/((x^4+x^2-1)*(x^2-x+1)*(x^2+x-1)). - Conjectured by Simon Plouffe in his 1992 dissertation.
a(n) = Sum_{k=0..floor((n-1)/2)} A102541(n-1, 2*k), n >= 4. - Johannes W. Meijer, Aug 24 2013
a(n) = (1/4) * (2*F(floor((n+1)/2)) + F(n) + A010892(n-1)), with F(n) = A000045(n) the Fibonacci numbers. - Ralf Stephan, from Plouffe's g.f. Aug 25 2013

Extensions

More terms from Johannes W. Meijer, Aug 24 2013