A005688 Numbers of Twopins positions.
1, 2, 3, 5, 7, 10, 14, 20, 30, 45, 69, 104, 157, 236, 356, 540, 821, 1252, 1908, 2909, 4434, 6762, 10319, 15755, 24066, 36766, 56176, 85837, 131172, 200471, 306410, 468371, 715975, 1094516, 1673232, 2557997, 3910683
Offset: 5
References
- R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1,2,-2,0,0,0,-1).
Programs
-
Mathematica
LinearRecurrence[{2,0,-2,1,2,-2,0,0,0,-1},{1,2,3,5,7,10,14,20,30,45},40] (* Harvey P. Dale, Aug 26 2019 *)
Formula
G.f.: (x^5*(1-x^2+x^3-2*x^5-x^6-x^7-x^8-x^9))/((1-x^2-x^5)*(1-2*x+x^2-x^5)). - Ralf Stephan, Apr 22 2004
a(n) = sum(A102541(n-k-1, 2*k), k=0..floor((n-1)/3)), n >= 5. - Johannes W. Meijer, Aug 24 2013
Extensions
More terms from Johannes W. Meijer, Aug 24 2013
Comments