cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005688 Numbers of Twopins positions.

Original entry on oeis.org

1, 2, 3, 5, 7, 10, 14, 20, 30, 45, 69, 104, 157, 236, 356, 540, 821, 1252, 1908, 2909, 4434, 6762, 10319, 15755, 24066, 36766, 56176, 85837, 131172, 200471, 306410, 468371, 715975, 1094516, 1673232, 2557997, 3910683
Offset: 5

Views

Author

Keywords

Comments

The complete sequence by R. K. Guy in "Anyone for Twopins?" starts with a(0) = 0, a(1) = 1, a(2) = 1, a(3) = 1 and a(4) =1. The formula for a(n) confirms these values. - Johannes W. Meijer, Aug 24 2013

References

  • R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Programs

  • Mathematica
    LinearRecurrence[{2,0,-2,1,2,-2,0,0,0,-1},{1,2,3,5,7,10,14,20,30,45},40] (* Harvey P. Dale, Aug 26 2019 *)

Formula

G.f.: (x^5*(1-x^2+x^3-2*x^5-x^6-x^7-x^8-x^9))/((1-x^2-x^5)*(1-2*x+x^2-x^5)). - Ralf Stephan, Apr 22 2004
a(n) = sum(A102541(n-k-1, 2*k), k=0..floor((n-1)/3)), n >= 5. - Johannes W. Meijer, Aug 24 2013

Extensions

More terms from Johannes W. Meijer, Aug 24 2013