A005691 Number of Twopins positions.
1, 2, 3, 5, 7, 10, 13, 18, 24, 35, 50, 75, 109, 161, 231, 336, 482, 703, 1020, 1498, 2188, 3214, 4694, 6877, 10039, 14699, 21487, 31489, 46097, 67582, 98977, 145071, 212463, 311344, 456045, 668328, 979182, 1435107, 2102900, 3082037, 4516347, 6618985, 9699527, 14215176
Offset: 6
Keywords
References
- R. K. Guy, ``Anyone for Twopins?,'' in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- Vincenzo Librandi, Table of n, a(n) for n = 6..1000
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
Crossrefs
Cf. A228570.
Programs
-
Mathematica
CoefficientList[Series[((1 - x^2 + x^3 - 2*x^6 - x^7 - x^8 - x^9 - x^10 - x^11))/((x^3 - x + 1) (x^3 + x - 1) (x^6 + x^2 - 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, May 03 2017 *)
Formula
G.f.: (x^6*(1-x^2+x^3-2*x^6-x^7-x^8-x^9-x^10-x^11))/((x^3-x+1)*(x^3+x-1)*(x^6+x^2-1)). - Ralf Stephan, Apr 22 2004
a(n) = Sum_{k=0..floor((n-1)/2)} A228570(n-1, 2*k), n >= 6. - Johannes W. Meijer, Aug 26 2013
Extensions
Extended by Johannes W. Meijer, Aug 26 2013
Comments