cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005872 Theta series of hexagonal close-packing with respect to octahedral hole.

Original entry on oeis.org

0, 0, 0, 6, 0, 0, 0, 0, 0, 6, 0, 6, 0, 0, 0, 12, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 18, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 24, 0, 6, 0, 0, 0, 0, 0, 12, 0, 0, 0, 24, 0, 0, 0, 0, 0, 24, 0, 6, 0, 0, 0, 36, 0, 12, 0, 0, 0, 0, 0, 12, 0, 0, 0, 30, 0, 0, 0, 0, 0, 18
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 6*q^3 + 6*q^9 + 6*q^11 + 12*q^15 + 6*q^17 + 12*q^23 + 18*q^27 + ... - _Michael Somos_, Jul 06 2018
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.

Crossrefs

Cf. A298931.

Programs

  • Mathematica
    a[ n_] := SeriesCoefficient[ 6 x^3 QPochhammer[ x^16]^2 QPochhammer[ x^18]^3 / (QPochhammer[ x^6] QPochhammer[ x^8]), {x, 0, n}]; (* Michael Somos, Jul 06 2018 *)
  • PARI
    {a(n) = my(A, m); if( n<3 || n%2==0, 0, m = n\2 - 1; A = x * O(x^m); 6 * polcoeff( eta(x^8 + A)^2 * eta(x^9 + A)^3 / (eta(x^3 + A) * eta(x^4 + A)), m))}; /* Michael Somos, Jul 06 2018 */

Formula

a(2*n) = 0. a(2*n + 3) = 6*A298931(n). - Michael Somos, Jul 06 2018