A005878 Theta series of cubic lattice with respect to deep hole.
8, 24, 24, 32, 48, 24, 48, 72, 24, 56, 72, 48, 72, 72, 48, 48, 120, 72, 56, 96, 24, 120, 120, 48, 96, 96, 72, 96, 120, 48, 104, 168, 96, 48, 120, 72, 96, 192, 72, 144, 96, 72, 144, 120, 96, 104, 192, 72, 120, 192, 48, 144, 216, 48, 96, 120, 144, 192, 168, 120, 96, 216, 72
Offset: 0
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 107.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..99 from Herman Jamke (hermanjamke(AT)fastmail.fm))
- G. Nebe and N. J. A. Sloane, Home page for this lattice
Programs
-
Mathematica
QP = QPochhammer; CoefficientList[(2 QP[q^2]^2/QP[q])^3 + O[q]^63, q] (* Jean-François Alcover, Jul 04 2017 *)
-
PARI
{a(n)=if(n<0, 0, 8*polcoeff( sum(k=0, (sqrtint(8*n+1)-1)\2, x^((k^2+k)/2), x*O(x^n))^3, n))} {a(n)=local(A); if(n<0, 0, A=x*O(x^n); 8*polcoeff( (eta(x^2+A)^2/eta(x+A))^3, n))} \\ Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
Formula
G.f.: Form (Sum_{n=-inf..inf} q^((2n+1)^2))^3, then divide by q^3 and set q = x^(1/8).
a(n) = 8 * A008443(n).
Extensions
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008
Comments