cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A005926 Theta series of diamond with respect to midpoint of edge.

Original entry on oeis.org

0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 18, 0, 0, 0
Offset: 0

Views

Author

Keywords

Examples

			G.f. = 2*q^(3/16) + 6*q^(19/16) + 12*q^(35/16) + 12*q^(51/16) + 6*q^(67/16) + 18*q^(83/16) + 18*q^(99/16) + ...
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Mathematica
    prec = 10;
    eta[q_, a_] := Sum[q^((i + a)^2), {i, Range[-prec, prec]}];
    t2[q_] := eta[q, 1/2];
    t3[q_] := eta[q, 0];
    T = Expand[t2[q^(1/2)]*(t2[q^2]*eta[q^4, 3/8] + t3[q^2]*eta[q^4, 1/8])] // PowerExpand;
    A = Range[prec*16 + 1];
    Do[A[[i + 1]] = Coefficient[T, q, i/16], {i, 1, prec*16}];
    A[[1]] = 0; A  (* Andy Huchala, May 17 2023 *)

Extensions

More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Feb 23 2008